WEIGHTED SUMS IN FINITE ABELIAN GROUPS

ABSTRACT. In this note we prove the following weighted generalization of Bollobás and Leader theorem (J. Number Theory 78 (1999), no. 1, 27–35): Let \(G \) be an abelian group of order \(n \) and \(k \) a positive integer. Let \((w_1, w_2, \ldots, w_k) \) be a sequence of integers where each \(w_i \) is co-prime to \(n \). Then, given a sequence \((x_1, x_2, \ldots, x_{k+r}) \) of elements of \(G \), where \(1 \leq r \leq n-1 \), if \(0 \) is the most repeated element in the sequence, and \(\sum_1^k w_i x_{\sigma(i)} \neq 0 \), for all permutations \(\sigma \) of \(\{1, 2, \ldots, k+r\} \), we have

\[
\left| \left\{ \sum_1^k w_i x_{\sigma(i)} : \sigma \text{ is a permutation of } \{1, 2, \ldots, k+r\} \right\} \right| \geq r+1.
\]

Communicated by Georges Grekos

1. Introduction

Let \(G \) be a finite abelian group (written additively) of order \(n \). For positive integers \(t, d \), with \(t \geq d \), given a sequence \((a_1, a_2, \cdots, a_t) \) of length \(t \), by a \(d \)-sum of the sequence one means a sum \(a_{i_1} + \cdots + a_{i_d} \) of the elements in a subsequence of length \(d \).

A result of Bollobás–Leader [2] is the following:

Theorem A. Suppose we are given an abelian group \(G \) of order \(n \) and a sequence \((a_1, a_2, \cdots, a_{n+r}) \) of elements of \(G \), where \(r \) is a positive integer. Then, if \(0 \) is not an \(n \)-sum, the number of distinct \(n \)-sums of the sequence is at least \(r+1 \).

For \(n \geq 3 \), taking \(r = n - 2 \) in the above result, one observes that given a sequence of length \(2n - 2 \) of elements of \(G \), if \(0 \) is not an \(n \)-sum, then the set of \(n \)-sums is the set \(G \setminus \{0\} \), that is, any non-zero element of \(G \) is an \(n \)-sum.

Similarly, for \(n \geq 2 \), taking \(r = n - 1 \) in Theorem A, it follows that given a sequence of length \(2n - 1 \) of elements of \(G \), \(0 \) must be an \(n \)-sum. When \(G \) is

2000 Mathematics Subject Classification: 11B50.
Keywords: Abelian group, permutation, weighted sum.
cyclic, this is the content of the well known theorem of Erdős–Ginzburg–Ziv [4] (can also see [1] or [8], for instance).

In the present paper, following the method of a simple proof of the above result of Bollobás and Leader as given by Yu [10], we prove a theorem which will imply (see Corollary 2) a result of Hamidoune [6], which had confirmed a conjecture of Caro [3] (see also [5], for instance) in a special case. For further information regarding these results, we refer to the paper of Grynkiewicz [5], where, among other things, the above mentioned conjecture of Caro has been established in full generality.

In what follows, we shall use the following notations. For a positive integer \(n \), the symbol \([n]\) will denote the set \(\{1, 2, \cdots, n\}\) and for a finite set \(S\), \(|S|\) will denote the number of elements of \(S\).

Theorem 1. Let \(G\) be an abelian group of order \(n\) and \(k\) a positive integer. Let \((w_1, w_2, \ldots, w_k)\) be a sequence of integers where each \(w_i\) is co-prime to \(n\). Then, given a sequence \(A: (x_1, x_2, \ldots, x_{k+r})\) of elements of \(G\), where \(1 \leq r \leq n - 1\), if \(0\) is the most repeated element in the sequence, and

\[
\sum_{i=1}^{k} w_i x_{\sigma(i)} \neq 0,
\]

for all permutations \(\sigma\) of \([k+r]\), we have

\[
\left| \left\{ \sum_{i=1}^{k} w_i x_{\sigma(i)} : \sigma \text{ is a permutation of } [k+r] \right\} \right| \geq r + 1.
\]

If in the above statement, instead of \(0\), \(x_1\) happens to be the most repeated element, then applying the result on the sequence \((a_1, a_2, \ldots, a_{k+r})\), where \(a_i = x_i - x_1\), for all \(i = 1, 2, \cdots, k+r\), and observing that translation of a subset of \(G\) by an element does not change its cardinality, one obtains the following:

Corollary 1. Let \(G\) be an abelian group of order \(n\) and \(k\) a positive integer. Let \((w_1, w_2, \ldots, w_k)\) be a sequence of integers where each \(w_i\) is co-prime to \(n\). Then, given a sequence \(A: (x_1, x_2, \ldots, x_{k+r})\) of elements of \(G\), where \(1 \leq r \leq n - 1\), if \(x_1\) is the most repeated element in the sequence, and

\[
\sum_{i=1}^{k} w_i x_{\sigma(i)} \neq \left(\sum_{i=1}^{k} w_i \right) x_1,
\]

for all permutations \(\sigma\) of \([k+r]\), we have

\[
\left| \left\{ \sum_{i=1}^{k} w_i x_{\sigma(i)} : \sigma \text{ is a permutation of } [k+r] \right\} \right| \geq r + 1.
\]
WEIGHTED SUMS IN FINITE ABELIAN GROUPS

In Corollary 1 above, taking \(r = n - 2 \) (that is, when \(A \) is of length \(k + n - 2 \)), and writing

\[
\alpha = \left(\sum_{i=1}^{k} w_i \right) x_1,
\]

if

\[
\sum_{i=1}^{k} w_i x_{\sigma(i)} \neq \alpha,
\]

for all permutations \(\sigma \) of \([k + n - 2]\), we have

\[
\left\{ \sum_{i=1}^{k} w_i x_{\sigma(i)} : \sigma \text{ is a permutation of } [k + n - 2] \right\} = G \setminus \{\alpha\}.
\]

Similarly, taking \(r = n - 1 \) in Corollary 1, one obtains the following:

Corollary 2 (Hamidoune). Let \(G \) be an abelian group of order \(n \) and \(k \) a positive integer. Let \((w_1, w_2, ..., w_k)\) be a sequence of integers where each \(w_i \) is co-prime to \(n \). Then, given a sequence \(A : (x_1, x_2, ..., x_{k+n-1}) \) of elements of \(G \), if \(x_1 \) is the most repeated element in the sequence, we have

\[
\sum_{i=1}^{k} w_i x_{\sigma(i)} = \left(\sum_{i=1}^{k} w_i \right) x_1,
\]

for some permutation \(\sigma \) of \([k + n - 1]\). Hence, if the weights \(w_i \) satisfy

\[
\sum_{i=1}^{k} w_i \equiv 0 \pmod{n}, \quad \text{then we have} \quad \sum_{i=1}^{k} w_i x_{\sigma(i)} = 0,
\]

for some permutation \(\sigma \) of \([k + n - 1]\).

2. Proof of Theorem 1

We need the following result of Scherk [9] (see also [7]).

Lemma 1. Let \(B \) and \(C \) be two subsets of an abelian group \(G \) of order \(n \). Suppose \(0 \in B \cap C \) and suppose that the only solution of

\[
b + c = 0, \quad b \in B, \quad c \in C \quad \text{is} \quad b = c = 0.
\]

Then

\[
|B + C| \geq \min(n, |B| + |C| - 1).
\]
Proof of Theorem 1. Let \(L = \{ i : x_i = 0 \} \) and \(|L| = l \). By our assumption, \(l \leq k - 1 \).

Let \(S \subset [k + r] \setminus L \) be such that \(|S| = s \) is maximal subject to the conditions \(s \leq k - 1 \) and

\[
\sum_{i \in S} w_{f(i)} x_i = 0
\]

for some injective map \(f : S \to [k] \). It is possible that \(S \) is empty.

We note that \(l + s \leq k - 1 \).

For, if \(l + s \geq k \), then \(l \geq k - s \) and hence writing \(S' = \{ j \in [k] : j \neq f(i) \text{ for } i \in S \} \),

\[
\sum_{j \in S'} w_j x_{i_j} = 0 ,
\]

where \(x_{i_j}'s \) run over a subsequence of \((x_i : i \in L) \) and from (1) and (3), we have

\[
\sum_{i=1}^{k} w_{i} x_{\sigma(i)} = 0 ,
\]

for some permutation \(\sigma \) of \([k + r] \), contradicting our assumption.

Now, from (2),

\[
|[k + r] \setminus L \cup S| = k + r - (l + s) \geq k + r - (k - 1) = r + 1 .
\]

Therefore, there is \(T \subset [k + r] \setminus L \cup S \) such that \(|T| = r \). Let \(h \) be the maximum number of repetition of any element in the subsequence \(X : (x_i : i \in T) \). By our choice of \(L \), \(h \leq l \) and hence by (2)

\[
h + s \leq l + s \leq k - 1 .
\]

Let \(X = X_1 \cup X_2 \cup \cdots \cup X_h \) be a partition of \(X \) into non-empty subsets, that is, in a particular \(X_i \) no element is repeated. More precisely, this is done in the following way. Let \(x \) be an element of \(X \) which is repeated \(h \) times. Then we put \(x \) in each \(X_i \). Any other element, say \(y \), occurring in \(X \) appears \(m \leq h \) times and we put \(y \) in \(X_i \), \(1 \leq i \leq m \). Thus,

\[
|X_1| + |X_2| + \cdots + |X_h| = r .
\]

From (4), \(h < k - s \). Let \(w_1', \ldots , w_{k-s}', k \) be the subsequence \((w_i : i \in S') \), where \(S' = \{ j \in [k] : j \neq f(i) \text{ for } i \in S \} \).

We claim that for \(1 \leq j \leq h \),

\[
0 \notin w_1'X_1 + w_2'X_2 + \cdots + w_j'X_j .
\]
WEIGHTED SUMS IN FINITE ABELIAN GROUPS

If possible, suppose
\[0 = w'_1 x_{i_1} + w'_2 x_{i_2} + \cdots + w'_j x_{i_j}, \]
where \(x_{i_t} \in X_t \), for \(t = 1, 2, \cdots, j \). Then, appending \(w'_1 x_{i_1} + w'_2 x_{i_2} + \cdots + w'_j x_{i_j} \) to the left hand side of (1), since \(|S \cup \{i_1, i_2, \cdots, i_j\}| = s + j \leq h + s \leq k - 1 \), by (4), we are led to a contradiction to the maximality of \(S \).

This establishes the claim.

Writing \(X'_t = X_t \cup \{0\} \), for \(t = 1, 2, \cdots, h \), and observing that \(|cX'_t| = |X'_t| \), for any integer \(c \) co-prime to \(n \), from (5), we have
\[\sum_{i=1}^{h} |w'_i X'_i| = r + h. \]

Therefore, by repeated application of Lemma 1 (observe that by (6), the condition of the lemma is satisfied), we have
\[\left| \sum_{i=1}^{h} w'_i X'_i \right| \geq \min \left\{ n, \sum_{i=1}^{h} |w'_i X'_i| - (h - 1) \right\} \]
\[= \min \{n, r + 1\} = r + 1. \]

Therefore, \(X: (x_i, i \in T) \) with \(h \) zeros from \((x_i, i \in L) \) has at least \((r + 1) \) \(h \)-sums with weights \(w'_i \). So adding a weighted sum of the remaining \(k + r - (r + h) = k - h \) elements of the sequence \(A \) with the remaining \(k - h \) weights to each of the above \((r + 1) \) \(h \)-sums, we get at least \((r + 1) k \)-sums with the given weights. \(\square \)

REFERENCES

109
Received July 1, 2008
Accepted December 7, 2008

Sukumar D. Adhikari
Mohan N. Chintamani
Bhavin K. Moriya
Prabal Paul

Harish-Chandra Research Institute
(Former Mehta Research Institute)
Chhatnag Road, Jhusi
Allahabad 211 019
INDIA.
E-mail: adhikari@mri.ernet.in
chintamani@mri.ernet.in
bhavinmoriya@mri.ernet.in
prabal@mri.ernet.in