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ABSTRACT. Using concepts of generalized asymptotic and logarithmic densi-
ties based on weighted arithmetic means over an arithmetical semigroup G we
prove that under some additional technical assumptions on the weighted count-
ing function of its elements, a subset of G exists with all four generalized densities
(upper and lower asymptotic and logarithmic) prescribed subject to the natural

condition 0 ≤ d(A) ≤ `(A) ≤ `(A) ≤ d(A) ≤ 1.

Communicated by Ladislav Mǐśık

Introduction

The content of the underlying paper grew out from several motivations. A
simple consequence of the Prime Number Theorem (cf. [19, p. 155]) is that the
set of all rational numbers p/q, where p, q are primes, is dense in (0,∞). Led
by the concepts of difference and multiplicative bases [12] of the set of positive
integers N, Šalát defined [16, 17] the concept of a ratio set. The ratio set of a
subset A of the set positive real numbers is defined by R(A) = {a/b : a, b ∈ A}.
The set A is called (R)-dense if R(A) is (topologically) dense in the set of
positive real numbers R+. A natural question is to ask what arithmetic density
relations imposed on A ⊂ N imply its (R)-denseness.

Motivated by the relationship between difference and multiplicative bases and
their density properties [12, p. 24, 177–182], Šalát proved that if the asymptotic
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density d(A) of A ⊂ N is positive, then A is an (R)-dense set. In the same paper,
he also showed that only the condition that the lower asymptotic density d(A) is
positive does not guarantee the (R)-density of A. Furthermore, he proved that
if the upper asymptotic density d(A) of A equals 1, then A is an (R)-dense set,
but on the other hand, for each ε > 0 there exists a set A ⊂ N such that its
upper asymptotic density satisfies d(A) > 1− ε, yet A is not (R)-dense.

On a related note, we note that a sequence A of positive integers having posi-
tive lower asymptotic density, say d, does not necessarily contain a subsequence
B ⊂ A with asymptotic density d. The set of pairs (d(B), d(B)), where B
runs over all subsequences of A, is described in [5, 6]. To construct examples in
which such subsets exist, one may also use results from the theory of distribution
functions ([20]).

Strauch and Tóth [21] refined Šalát’s results by showing that if d(A)+d(A) ≥
1 (and, in particular, if d(A) ≥ 1/2), then A is (R)-dense. They also showed
that for every t ∈ (0, 1/2) there exists an A ⊂ N with d(A) = t such that A is
not (R)-dense. They also proved that for every couple of real numbers α and β
with 0 ≤ α ≤ β ≤ 1 there exists an (R)-dense set such that

d(A) = α and d(A) = β. (1)

Mǐśık [11] showed that we can prescribe not only the values (1) but simultane-
ously also the values of the lower and upper logarithmic densities `(A) and `(A)
as well. Since we always have

0 ≤ d(A) ≤ `(A) ≤ `(A) ≤ d(A) ≤ 1, (2)

he proved that given any quadruple α, β, γ, δ of real numbers such that 0 ≤
α ≤ β ≤ γ ≤ δ ≤ 1, there exists a set A ⊆ N with d(A) = α, `(A) = β, `(A) = γ,
and d(A) = δ (see [11, Theorem 2]. In [10], a constructive proof of this result
was given).

In another direction, let d(S) and σ(S) denote the asymptotic density (pro-
vided that it exists), and the Schnirelmann density, respectively, of the set of
natural numbers not divisible by any element of a set S of natural numbers, and
let D(S) = d(S) − σ(S) ≥ 0. In [4], it is proved, among other results, that for
finite subsets S of the set P of all primes the following hold:

(1) sup{D(S) : S ⊂ P, S finite} = 1;
(2) there exists S′ with S ⊂ S′ ⊂ P such that σ(S′) = σ(S) and D(S′) = 0.
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Mǐśık [11] also extended the validity of the inequality (1) in another direc-
tion, namely in a framework of generalized asymptotic densities defined through
weighted-means. The weighted means approach to a density concept was for
the first time used by van der Corput [2, p. 202] in connection with his inves-
tigations concerning the properties of the Schnirelmann density. This natural
generalization of the density concept was later (probably independently) used by
Alexander [1, Section 1] to model the relation between the asymptotic density
and the logarithmic density with the aim to generalize some known results on
primitive sequences. In [14, 15], it was shown that using the weighted arithmetic
means approach to the density concept, a theory can be developed in which re-
lations of type (2) remain true for a wider class of arithmetic densities (see, for
instance, Lemma 8 below).

In the present paper, we show that Mǐśık’s result related to (2) can be ex-
tended to a class of arithmetical densities even in a more general setting of the
so-called arithmetical semigroups.

This paper is organized as follows. In the first section, we review the notion
of an arithmetic semigroup. In the second section, we review the concept of a
generalized asymptotic density and some of its properties, and we show following
Strauch, Tóth and Mǐśık’s ideas, that if the generalized asymptotic densities sat-
isfy two mild natural conditions, then the semigroup contains (R)-dense subsets
of asymptotic density zero. Consequently, we can concentrate ourselves merely
to conditions of type (1) and (2). While to extend (1) requires only a techni-
cal adaptation of Mǐśık’s ideas, the generalization of (2) is based on completely
different ideas. To do this, in the third section, we first review the generalized
logarithmic density. Finally, in the last section we prove our main result, namely
that under some additional technical assumptions every arithmetical semigroup
contains subsets having all four generalized densities (upper and lower asymp-
totic and logarithmic, respectively) prescribed. This is achieved by reducing the
problem to the construction of suitable sequences of real numbers in the interval
(0, 1).

1. Arithmetical semigroups

Let G denote a free commutative semigroup relative to a multiplication op-
eration denoted by juxtaposition, with identity element 1G, and with at most
countably many generators. Such a semigroup will be called arithmetical if in
addition a real-valued norm | · | is defined on G such that
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1. |1G| = 1, |a| > 1 for all a ∈ G \ {1G},
2. |ab| = |a|.|b| for all a, b ∈ G,
3. the total number

NG(x) =
∑

|a|≤x
a∈G

1

of elements a ∈ G of norm not exceeding x is finite for each real x.

We shall denote by PG the set of generators of G and its elements will be called
primes of G. In applications, a significant rôle is played by the arithmetical
semigroups satisfying the so-called

Axiom A. There exist positive constants A and δ and a constant η with
0 ≤ η < δ, such that

NG(x) = Axδ +O(xη).

More details on the abstract axiomatic approach to some arithmetical prob-
lems via the notion of arithmetical semigroup, and especially the theory of arith-
metical semigroups satisfying Axiom A, can be found in [8, 9], where the inter-
ested reader can find many interesting and non-trivial instances of arithmetical
semigroups satisfying Axiom A.

A more general class of arithmetical semigroups are the so called δ-regular
semigroups whose definition is based on the notion of δ-regularly varying function
(see [22]).

In most concrete applications, the norm mapping represents the size, or di-
mension, of the elements under consideration, and usually attains integral values.
Moreover, the norm is often a single integer-valued function, a restriction which
we shall not adopt here. Given an arithmetical semigroup G, let

|G| = Im{| · | : G→ R}
be its “shadow” image in the reals. The norm function on |G| is then the identity
mapping.

In what follows, we shall be interested to extend some results proved for
G = N. In this case the fact that the set of positive rationals Q+ = R(N) is
(topologically) dense in R+ played a significant rôle. To find some character-
izations ensuring that R(|G|) is also dense in R+ for some arithmetical semi-
groups G, we shall need the following result (for a proof, apply the exponential
function to the corresponding result [3, p. 25] for (R, +)):

Lemma 1. Let S be a multiplicative subgroup of R+ = (0,∞). Then S is dense
in R+, unless S is cyclic.
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Corollary 2. Let A be any set of real numbers all ≥ 1 such that A(x) =
#{a ∈ A : a ≤ x} is finite for each x > 1. If A(x)/ ln x is unbounded as x tends
to infinity, then the set of all ratios of all products of elements from A is dense
in R+.

P r o o f. Due to Lemma 1, the only obstruction to density is that A is contained
in some cyclic subgroup of R+. However, should that be so, then A(x) = O(lnx).

¤

For a set A ⊂ (1,∞), recall that R(A) = {a/b : a ∈ A, b ∈ A} denotes its
ratio set.

Corollary 3. If G is an arithmetical semigroup such that N|G|(x)/ ln x is
unbounded as x tends to infinity, then R(|G|) is dense in R+.

If G is an arithmetical semigroup such that R(|G|) is dense in R+, then G is
said to have dense hull.

Corollary 4. An arithmetical semigroup G satisfying Axiom A has dense hull.

2. Generalized asymptotic density

Let m : G → R+ be a function defined on an arithmetical semigroup G and
taking positive real values. For C ⊂ G, let NC(m, x) =

∑
|a|≤x m(a)χC(a), and

let

σx(C, m) =
NC(m, x)
NG(m, x)

=

∑
|a|≤x m(a)χC(a)∑

|a|≤x m(a)
denote the m-weighted arithmetic means of the indicator χC of C. The numbers

σ(C, m) = lim inf
x→∞

σx(C, m) and σ(C, m) = lim sup
x→∞

σx(C, m)

are called the lower m-density of C and the upper m-density of C, respec-
tively. If σ(C, m) = σ(C,m), this common value is called the m-density of C and
is denoted by σ(C, m). To guarantee that the expected properties of arithmetical
densities also transfer to the above defined m-densities, it is necessary to impose
some additional properties on m. To do so, write N ′

C(m, x) =
∑
|a|=x m(a)χC(a).

The conditions are1:
(I) the series

∑
a∈Gm(a) diverges,

1Under some circumstances (II) is a consequence of (I), cf. Lemma 9 and its proof. This is
also the case when G = N and m(n) = 1 identically. Condition (II) was omitted by mistake in
[14].
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(II) limx→∞
N ′
G(m, x)

NG(m, x)
= 0.

Note that if NG(m, x) is a δ-regularly varying function (see [18]), where δ ∈
(−∞,+∞), then (II) is a consequence of (I) (cf. [15]). This is for instance the
case when G satisfies Axiom A and m(n) = 1 for every n ∈ G. For this choice
of m, the lower m-density and the upper m-density of a set C ⊂ G coincide with
its lower and upper asymptotic densities d(C) and d(C), respectively.

A subset C ⊂ G will be called (R)-dense if the set R(|C|) is topologically
dense in R+. Since the zero density sets can be joined to other sets without
changing their density relationships, the next result makes possible to ignore
the (R)-density requirement, as mentioned in the introduction:

Theorem 5. Let G be an arithmetical semigroup with dense hull. Let m : G→
R+ satisfy conditions (I) and (II). Then there exists an (R)-dense set C ⊂ G
such that σ(C, m) = 0.

P r o o f. The following proof uses the ideas of the proof of the corresponding [11,
Lemma 1]. Since in the case of arithmetical semigroups the sets {a ∈ G : |a| = x}
are not at most singletons and that the norm values are not integers in general,
technical adjustments of that proof are necessary.

Let {ρn}∞n=1 = (0, 1)∩R(|G|). The proof will proceed by induction, where at
the kth step we construct a subset Dk of G and a real number xk, k = 1, 2, . . . ,
such that:

(i) the ratio set R(|Dk|) of Dk contains ρk,
(ii) Dj ⊂ {a ∈ G : |a| ≤ xj} for j = 1, . . . , k − 1,
(iii) Dj+1 ∩ {a ∈ G : |a| ≤ xj} = Dj for j = 1, . . . , k − 1,
(iv) σx(Dk,m) < 1/i for every x > xi and i = 1, . . . , k.

k = 1: By (II), there exists x1 ∈ R+ with

N ′
G(m, x1)

NG(m, x1)
<

1
3

for x > x1.

Since the norm | · | is multiplicative, we can find two elements b1, c1 ∈ G such
that |c1| > |b1| > x1, and

|b1|
|c1| = ρ1.

Let D1 = {a ∈ G : |a| = |c1|} ∪ {a ∈ G : |a| = |b1|}. Then

• σx(D1,m) = 0 if x < |b1|;
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• if |b1| ≤ x < |c1|, ND1(m, x) = N ′
D1

(m, |b1|), and therefore

σx(D1,m) ≤ N ′
D1

(m, |b1|)
NG(m, |b1|) <

1
3
;

• if x ≥ |c1| > |b1|, then similarly

σx(D1, m) =
N ′
D1

(m, |b1|) + N ′
D1

(m, |c1|)
NG(m, x)

≤ N ′
D1

(m, |c1|)
NG(m, |c1|) +

N ′
D1

(m, |b1|)
NG(m, |b1|)

<
1
3

+
1
3

=
2
3
.

Thus, (i)–(iv) hold for k = 1.
Knowing Dk−1 and xk−1, we can continue the induction process as follows.

Let xk be such that xk > max{|a| : a ∈ Dk−1}, and

σxk
(Dk−1, m) <

1
3k

, (3)

N ′
G(m, x)

NG(m, x)
<

1
3k

for x > xk. (4)

Again, let bk and ck be elements of G such that |bk|
|ck| = ρk, and |ck| > |bk| > xk.

Then the set

Dk = Dk−1 ∪ {a ∈ G : |a| = |bk|} ∪ {a ∈ G : |a| = |ck|},
fulfills conditions (i)–(iii). To verify (iv), consider the following cases:

• if xk ≤ x < |bk|, then

σx(Dk,m) ≤ NDk−1(m, xk)
NG(m, xk)

= σxk
(Dk−1,m) <

1
3k

;

• if |bk| ≤ x < |ck|, then

σx(Dk, m) ≤ NDk−1(m, xk) + N ′
G(m, |bk|)

NG(m, x)

≤ σxk
(Dk−1,m) +

N ′
G(m, |bk|)

NG(m, |bk|) <
2
3k

;

• if x ≥ |ck|, then

σx(Dk,m) =
NDk−1(m, xk) + N ′

G(m, |bk|) + N ′
G(m, |ck|)

NG(m, x)

≤ NDk−1(m, xk)
NG(m, xk)

+
N ′
G(m, |bk|)

NG(m, |bk|) +
N ′
G(m, |ck|)

NG(m, |ck|) <
1
k

,
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which together verify (iv). If D =
⋃∞

k=1Dk, then D is (R)-dense by (i), and of
m-density zero by (iv) and the fact that {xk}∞k=1 is strictly increasing. ¤
Theorem 6. Let G be an arithmetical semigroup with dense hull. Let m :
G → R+ satisfy conditions (I) and (II) and 0 ≤ α ≤ β ≤ 1 be arbitrary real
numbers. Then there exists an (R)-dense set A ⊂ G such that σ(A, m) = α and
σ(A, m) = β.

P r o o f. If C is a subset from Theorem 5, then for an arbitrary B ⊂ G the set
A = B ∪ C is (R)-dense, while σ(A,m) = σ(B,m) and σ(A, m) = σ(B, m). So,
it is sufficient to construct a set B ⊂ G with σ(B,m) = α and σ(B, m) = β.
Theorem 5 shows that we can suppose that β > 0.

Let |G| = {γn}∞n=1 be the set of elements of |G| ordered increasingly by their
magnitude. Clearly, γ1 = 1. Put x1 = γ1, y1 = γ2, B1 = {1G}. Suppose that we
had already constructed couples xi, yi such that

x1 < y1 < x2 < y2 < · · · < xn−1 < yn−1, (5)

and the sets Bk =
⋃k

i=1{a ∈ G : xi ≤ |a| < yi} for k = 1, 2, . . . , n− 1.
Then take for xn = γkn the smallest element in {γn}∞n=1 which is greater than

yn−1 such that

σxn

(
n−1⋃

i=1

{a ∈ G : xi ≤ |a| < yi}
)

< α +
1
n

,

and yn be such that

σyn

(
n⋃

i=1

{a ∈ G : xi ≤ |a| < yi}
)

> β − 1
n

.

It is possible, however, that some of the x’s and y’s are immediate successors in
the sequence {γi}∞i=1; e.g., if β − 1

n < α + 1
n , or if α = β. The existence of both

xn and yn is guaranteed by (I). Consequently, σ(A, m) ≤ α and σ(A, m) ≥ β.
To see the equalities, consider the first one. The left-hand term of the next

inequality is non-increasing for yn−1 ≤ x < xn, and

σx

(
n−1⋃

i=1

{a ∈ G : xi ≤ |a| < yi}
)
≥ α +

1
n

,

while its value jumps at xn by a quantity which due to (II) tends to 0 with n →
∞. Consequently, σ(A, m) = α, and a similar argument works for σ(A, m). ¤
Corollary 7. Let G be an arithmetical semigroup satisfying Axiom A and
0 ≤ α ≤ β ≤ 1 be given real numbers. Then there exists an (R)-dense set A ⊂ G
such that d(A) = α and d(A) = β.
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3. Generalized logarithmic density

Asymptotic density is not the only way of measuring the sets of integers. In
many cases, logarithmic density provides a more sensitive indicator of the prop-
erties of the integers endowed with certain multiplicative constraints (cf. [7]).
The relationship between asymptotic and logarithmic density was analyzed in
[14, 15]. It was shown there that starting with an m-density it is possible, under
additional assumptions on m (cf. for instance, Lemma 8 below), to construct a
new m̂-density, such that

0 ≤ σ(C,m) ≤ σ(C, m̂) ≤ σ(C, m̂) ≤ σ(C,m) ≤ 1. (6)

The condition imposed on m in [14] for which the relations between both density
concepts were studied is: Let m : G→ R+ satisfy

(III) for every a ∈ G, there exists a positive real number m̂(a) < 1, such that for
every subset C ⊂ G having m-density σ(C, m), the set aC = {ac : c ∈ G}
has m-density and σ(aC, m) = m̂(a)σ(C,m).

One sufficient condition for (6) to hold is given in the next result:

Lemma 8 ([14, Proposition 1]). Let m : G→ R+ be a completely multiplicative
function such that

∑

|a|≤x

m(a) = Bx∆ +O(xΘ), 0 ≤ Θ < ∆, as x →∞. (7)

Then,

(1)
∑
|a|≤x m̂(a) = ∆B ln x+ψm +O(xΘ−∆) holds with some suitable constant

ψm, and
(2) condition (6) holds for every C ⊂ G.

The proof uses partial summation and the fact that if m is completely multi-
plicative, then relation (7) implies2 that

m̂(a) = m(a)|a|−∆. (8)

Partial summation also gives that
∑

s<|a|≤t

m(a)
|a|∆ = B∆ln(t/s) +O(sΘ−∆), (9)

2Relation (8) is also a consequence of the more general assumption that
∑

a∈G
|a|≤x

m(a) =

x∆L(x), where L(x) is slowly oscillating.
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or that
∑

s≤|a|<t

m(a)
|a|∆ = B∆ln(t/s) +O(sΘ−∆), (10)

where both equalities hold uniformly in t > s.
The next result shows that under certain circumstances the means m̂ lead

again to a density:

Lemma 9. Under the assumptions of Lemma 8, the function m̂ satisfies condi-
tions (I) and (II).

P r o o f. (I) follows from part 1 of Lemma 8. For the proof of (II), note that

N ′
G(m̂, x) =

∑

|a|=x

m̂(a) =
∑

|a|=x

m(a)
|a|∆ =

1
x∆

∑

|a|=x

m(a).

Lemma 8 again gives

lim
x→∞

N ′
G(m̂, x)

NG(m̂, x)
¿ lim

x→∞
1

x∆
· Bx∆

∆B ln x
= 0. ¤

On the other side the optimism indicated above is not always justified, since
a further descent starting with m̂ in place of m gives nothing new:

Lemma 10 ([14, Proposition 2]). Under the assumptions of Lemma 8, we have
̂̂m = m̂.

We saw that if G = N, then the lower and the upper m̂-densities coincide
with the lower and the upper logarithmic densities, respectively, provided that
m is the constant function equal to 1. Consequently, a natural way to define
the lower and upper logarithmic densities of a subset C of an arithmetical
semigroup satisfying Axiom A is

l(C) = lim inf
x→∞

1
δA ln x

∑

a∈C
|a|≤x

|a|−δ, l(C) = lim sup
x→∞

1
δA ln x

∑

a∈C
|a|≤x

|a|−δ.

If G is an arithmetical semigroup, and m : G → R+ is a completely multi-
plicative function such that (7) holds, then the lower and the upper m̂-density
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of some C ⊂ G can be defined by

σ(C, m̂) = lim inf
x→∞

NC(m̂, x)
NG(m̂, x)

= lim inf
x→∞

1
∆B ln x

∑

a∈C
|a|≤x

m(a)
|a|∆ ,

σ(C, m̂) = lim sup
x→∞

NC(m̂, x)
NG(m̂, x)

= lim sup
x→∞

1
∆B ln x

∑

a∈C
|a|≤x

m(a)
|a|∆ .

4. Sets with prescribed upper and lower densities

In Theorem 6, we saw that it is possible to prescribe the values of the lower
and upper m-densities even with some additional requirements. The next result
shows that we can prescribe lower and upper densities together with the lower
and upper derived logarithmic densities. The only limitation beforehand for the
given values is the necessary condition (6):

Theorem 11. Let G be an arithmetical semigroup and m : G → R+ be such
that ∑

|a|≤x,a∈G
m(a) ∼ Bx∆, (11)

where B and ∆ > 0. Let m′ = m(a)/(|a|∆). Given numbers 0 ≤ α ≤ β ≤ γ ≤
δ ≤ 1, then there is a subset A ⊂ G such that

σ(A, m) = α, σ(A,m′) = β, σ(A, m′) = γ, σ(A, m) = δ. (12)

P r o o f. Partial summation shows that
∑

|a|≤x

m′(a) =
∫ x

1

∆t−∆−1
∑

|a|≤t

m(a)dt +O(1) ∼ ∆B ln x.

The same type of argument shows that if A ⊂ G and α = σ(A, m) and δ =
σ(A, m), then

α + o(1) ≤
∑

a∈A,|a|≤x m′(a)

∆B ln x
≤ δ + o(1).

Thus, if β = σ(A, m′) and γ = σ(A, m′), we then have α ≤ β ≤ γ ≤ δ.
The case α = β = γ = δ, namely showing for each η ∈ [0, 1], there is a set

A ⊂ G with σ(A,m) = η, follows from Theorem 6 (in fact, this is a bit easier
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than Theorem 6 since the hypothesis here is stronger, and we are proving less).
For the general case, let xn = 222n

, and let yn = nxn. Thus,

∑

|a|≤xn

m(a) = o


 ∑

xn<|a|≤yn

m(a)


 ,

∑

|a|≤yn

m′(a) = o


 ∑

yn<|a|≤xn+1

m′(a)


 . (13)

Let Aα,Aβ ,Aγ ,Aδ be subsets of G with (m)-densities α, β, γ, δ, respectively.
Now define a set A ⊂ Aα ∪ Aβ ∪ Aγ ∪ Aδ as

⋃
n≥1(An ∪ A′n), where

An =

{
{a ∈ Aα : |a| ∈ (xn, yn]}, if n is odd,
{a ∈ Aδ : |a| ∈ (xn, yn]}, if n is even,

A′n =

{
{a ∈ Aβ : |a| ∈ (yn, xn+1]}, if n is odd,
{a ∈ Aγ : |a| ∈ (yn, xn+1]}, if n is even.

Relation (13) shows that A fulfills the conditions of Theorem 11. ¤

Corollary 12. Let G be an arithmetical semigroup satisfying Axiom A and
0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 be given real numbers. Then there exists a set A ⊂ G
such that

d(A) = α, `(A) = β, `(A) = γ, d(A) = δ.

It is interesting to note that it seems that Mǐśık [11] was the first who posed
the question about the existence of a set of positive integers with prescribed lower
and upper asymptotic and logarithmic densities. Note that the generalization
in terms of arithmetical semigroups allows us to transfer the classical results
from integers to other objects such as as algebraic integers, ideals of number
fields, finite Abelian groups, etc. (see [8, 9] for more non-standard examples).
Moreover, there are simple ways to construct further arithmetical semigroups
satisfying Axiom A from a given one. For instance [8, 4.1.3 Proposition], given
any element a ∈ G of an arithmetical semigroup G satisfying Axiom A, then
the set G〈a〉 of all elements b ∈ G that are coprime to a, also satisfies Axiom A.
More generally, if G is δ-regular and ai are pairwise coprime, then the set of
all elements of G coprime to all of the ai’s is under certain conditions again
a δ-regular arithmetical semigroup [22, Satz 2.2] (for the case G = N see [13,
p. 14]).

Theorem 5 also shows that there exist sets C of asymptotic m-density zero
(hence, due to (6), of “logarithmic” density σ(C, m̂) equal to zero as well) such
that the set of ratios of all products of elements of C is dense in R+. It follows
that our sets A can be endowed with the additional property that the set of
ratios of all products of elements of A is also dense in R+.
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Finally note that (11) may be weakened. For example, if we define m′′(a) as
m′(a)/ ln(|a|), then the same results should go through for this double-logarithmic
density (in fact, all six upper and lower densities might be prescribed).
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