THE b-ADIC DIAPHONY OF DIGITAL
(T, s)-SEQUENCES

JULIA GRESLEHNER

ABSTRACT. The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this article we give an upper bound on the b-adic diaphony of digital (T, s)-sequences over \mathbb{Z}_b. And we derive a condition on the quality function T such that the b-adic diaphony of the digital (T, s)-sequence over \mathbb{Z}_b is of order $O((\log N)^s/2N-1)$. We also give a metrical result; for μ_s-almost all generators of a digital (T, s)-sequence over \mathbb{Z}_b the b-adic diaphony of the sequence is of order $O((\log \log N)^2(\log N)^{3s/2}N^{-1})$.

Communicated by Vassil Grozdanov

1. Introduction

The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the s-dimensional unit cube. This notion was introduced by Hellekalek and Leeb \cite{6} for $b = 2$ and later generalized by Grozdanov and Stoilova \cite{5} for general integers $b \geq 2$. We recall now the definition of b-adic Walsh functions, which will be needed for the definition of the b-adic diaphony.

Let $b \geq 2$ be an integer. For a nonnegative integer k with base b representation $k = \kappa_{a-1}b^{a-1} + \cdots + \kappa_1b + \kappa_0$, with $\kappa_i \in \{0, \ldots, b-1\}$ and $\kappa_{a-1} \neq 0$, we define the Walsh function $b_{\text{wal}}(x) : [0, 1) \to \mathbb{C}$ by

$$b_{\text{wal}}(x) := e^{2\pi i(x_1\kappa_0 + \cdots + x_{a-1}\kappa_{a-1})/b},$$

for $x \in [0, 1)$ with base b representation $x = \frac{x_1}{b} + \frac{x_2}{b^2} + \cdots$ (unique in the sense that infinitely many of the x_i must be different from $b-1$).
For higher dimensions $s \geq 1$, $k = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$ and $x = (x_1, \ldots, x_s) \in [0,1)^s$ we write

$$b_{\text{wal}}(x) := \prod_{j=1}^s b_{\text{wal}}(x_j).$$

Now we are ready to define the b-adic diaphony (see [5] or [6]).

Definition 1. Let $b \geq 2$ be an integer. The b-adic diaphony of the first N elements of a sequence $\omega = (x_n)_{n \geq 0}$ in $[0,1)^s$ is defined by

$$F_{b,N}(\omega) := \left(\frac{1}{(1+b)^s - 1} \sum_{\substack{k \in \mathbb{N}_0^s \\mid k \neq 0}} r_b(k) \left| \frac{1}{N} \sum_{n=0}^{N-1} b_{\text{wal}}(x_n) \right| \right)^{1/2},$$

where for $k = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$, $r_b(k) := \prod_{j=1}^s r_b(k_j)$ and for $k \in \mathbb{N}_0$,

$$r_b(k) := \begin{cases}
1 & \text{if } k = 0 \\
b^{-2a} & \text{if } b^a \leq k < b^{a+1} \text{ where } a \in \mathbb{N}_0.
\end{cases}$$

Throughout this article we will write $a(k) = a$, if a is the unique determined integer such that $b^a \leq k < b^{a+1}$. If $b = 2$ we also speak of dyadic diaphony.

The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence: a sequence ω in the s-dimensional unit cube is uniformly distributed modulo one if and only if $\lim_{N \to \infty} F_{b,N}(\omega) = 0$. This was shown in [6] for the case $b = 2$ and in [5] for the general case. Further it is shown in [1] that the b-adic diaphony is – up to a factor depending on b and s – the worst case error for quasi-Monte Carlo integration of functions from a certain Hilbert space $H_{\text{wal},s,\gamma}$, which has been introduced in [2].

In the following let b be a prime, i.e. we can always take \mathbb{Z}_b for the finite field of prime order b. We consider the b-adic diaphony of digital (T,s)-sequences over \mathbb{Z}_b. Here s is the dimension of the sequence and $T : \mathbb{N}_0 \to \mathbb{N}_0$ is the quality function of the sequence; lower quality functions imply stronger equidistribution properties. A special class among these functions are the digital (t,s)-sequences over \mathbb{Z}_b, where the quality function T is a constant t. Digital (t,s)-sequences were introduced by Niederreiter [8, 9]. The concept of (T,s)-sequences was introduced by Larcher and Niederreiter in [7], as a quality function T is a more sensitive measure than a quality parameter t. For more information on (T,s)-sequences see [3, Chapter 4].

In [4] the author showed a formula for the b-adic diaphony of digital $(0,s)$-sequences over \mathbb{Z}_b, $s = 1,\ldots,b$, and an upper bound for the b-adic diaphony of
THE b-ADIC DIAPHONY OF DIGITAL (T,s)-SEQUENCES

digital (t,s)-sequences over \mathbb{Z}_b for primes b. In both cases we obtained for the asymptotic order

$$F_{b,N}(\omega) = O\left(\frac{(\log N)^{s/2}}{N}\right) \quad \text{(as } N \to \infty)$$

(1)

In this article we would like now to find in analogy to [4] an upper bound on the b-adic diaphony of digital (T,s)-sequences over \mathbb{Z}_b and give a condition on the quality function T, so that we obtain the same order as in (1). With a weaker condition on T we still obtain the asymptotic order

$$(NF_{b,N}(\omega))^2 = O\left(\sum_{u=1}^{[\log_b N]} u^{s-1} b^2 T(u)\right) \quad \text{(as } N \to \infty).$$

Now we give a definition of digital (T,s)-sequences over \mathbb{Z}_b. The quality function T is closely related to a quantity ρ_m, which in some sense “measures” the “linear independence” of s infinite matrices C_1, \ldots, C_s (see [3, Chapter 4.4]). Let C_1, \ldots, C_s be $N \times N$ matrices over the finite field \mathbb{Z}_b. For any integers $1 \leq i \leq s$ and $m \geq 1$ by $C_i(m)$ we denote the left upper $m \times m$ sub-matrix of C_i. Then

$$\rho_m = \rho_m(C_1, \ldots, C_s) := \rho(C_1^{(m)}, \ldots, C_s^{(m)}),$$

where ρ is the independence parameter defined for s-tuples of $m \times m$ matrices over \mathbb{Z}_b, i.e. ρ is the largest integer such that for any choice $d_1, \ldots, d_s \in \mathbb{N}_0$ with $d_1 + \cdots + d_s = \rho$, the following holds:

- the first d_1 row vectors of $C_1^{(m)}$ together with
- the first d_2 row vectors of $C_2^{(m)}$ together with

 \vdots

- the first d_s row vectors of $C_s^{(m)}$ are linearly independent over the finite field \mathbb{Z}_b.

Definition 2. For $n \geq 0$ let $n = n_0 + n_1 b + n_2 b^2 + \cdots$ be the base b representation of n. For $j \in \{1, \ldots, s\}$ multiply the vector $\mathbf{n} = (n_0, n_1, \ldots)^\top$ by the matrix C_j,

$$C_j \cdot \mathbf{n} =: (x_n^j(1), x_n^j(2), \ldots)^\top \in \mathbb{Z}_b^\infty,$$

and set

$$x_n^{(j)} := \frac{x_n^j(1)}{b} + \frac{x_n^j(2)}{b^2} + \cdots.$$

Finally set $\mathbf{x}_n := (x_n^{(1)}, \ldots, x_n^{(s)})$.

3
The digital sequence ω constructed this way by the $N \times N$ matrices C_1, \ldots, C_s over \mathbb{Z}_b is a strict (T, s)-sequence in base b with $T(m) = m - \rho_m$ for all $m \in \mathbb{N}$. The matrices C_1, \ldots, C_s are called the generator matrices of the sequence.

Remark 1. (1) Any strict digital (T, s)-sequence over \mathbb{Z}_b is a digital (U, s)-sequence over \mathbb{Z}_b for all U with $U(m) \geq T(m)$ for all m.

(2) The concept of (t, s)-sequences in base b is contained in the concept of (T, s)-sequences in base b. We just have to take for T the constant function $T(m) = t$ for all m (resp. $T(m) = m$ for $m \leq t$).

For more information on digital (T, s)-sequences we refer to [3].

Definition 3. Let ω be a uniformly distributed strict digital (T, s)-sequence in base b. For $r \in \mathbb{N}_0$ we set
\[\eta(r) := \min\{m : m - T(m) \geq r\}. \]
This minimum exists for all r, because $\lim_{m \to \infty} m - T(m) = \infty$ if ω is uniformly distributed modulo 1 (see [3, Theorem 4.32]).

We will need the following properties of the function η:

(1) η is non-decreasing.

(2) The condition $\eta(r) > u$ is equivalent to $u - T(u) < r$.

These properties follow easily from the fact that $S(m) := m - T(m)$ is non-decreasing (see [3, p.133]) and from the definition of η.

Finally we need the definition of the function ψ_b. Let β be an integer in $\{1, \ldots, b - 1\}$. For $x \in \left[\frac{j}{b}, \frac{j+1}{b}\right)$, $j \in \{0, \ldots, b - 1\}$ we set
\[\psi_{b}^\beta(x) := \frac{b^2(b^2 - 1)}{12} \left| 1 - \frac{z_{\beta}^j}{b z_{\beta} - 1} + \frac{z_{\beta}^j}{b} \left(x - \frac{j}{b}\right) \right|^2, \]
where $z_{\beta} = e^{\frac{2\pi i}{b} \beta} = \text{wal}_{1}\left(\frac{\beta}{b}\right)$; then the function is extended to the reals by periodicity. The function ψ_b is now defined as the mean of the functions ψ_{b}^β:
\[\psi_b(x) := \frac{1}{b - 1} \sum_{\beta=1}^{b-1} \psi_{b}^\beta(x). \]

We will need two facts about ψ_b:

(1) The function ψ_b is bounded (see [4, Lemma 12]),

4
THE b-ADIC DIAPHONY OF DIGITAL (T, s)-SEQUENCES

(2) $\psi_b(x) = \frac{b^2(b^2-1)}{12} x^2$ on the interval $[0, \frac{1}{b})$ (see [4, Lemma 11(1)]).

For further properties of the function ψ_b we refer to [4, Lemma 11, Lemma 13].

2. Results

We show now an upper bound on the b-adic diaphony of digital (T, s)-sequences. From this we derive (under certain conditions on the quality function T) the asymptotic order of the b-adic diaphony of these sequences. We also give a metrical result. The proofs of the results below are given in Section 3.

Theorem 1. Let ω be a digital (T, s)-sequence over \mathbb{Z}_b. For any $N \geq 1$ we have

\[
(NF_{b,N}(\omega))^2 \leq \frac{1}{(b+1)^s - 1} \frac{12}{b^3(b+1)} \sum_{w=1}^{s} \binom{s}{w} \left(\frac{b^4}{b^2 - 1} \right)^w \sum_{u=1}^{\infty} \psi_b \left(\frac{N}{b^u} \right) b^u \sum_{v=u-1}^{\infty} \frac{v^{w-1} b^{2T(v)}}{b^v},
\]

where c is a constant that does not depend on N.

From the above theorem we obtain now the asymptotic behaviour of certain digital (T, s)-sequences over \mathbb{Z}_b.

Corollary 1. Let ω be a digital (T, s)-sequence over \mathbb{Z}_b satisfying the property that

\[
\sum_{v=u-1}^{\infty} \frac{v^{s-1} b^{2T(v)}}{b^v} \leq c_1 \frac{u^{s-1} b^{2T(u)}}{b^u} \quad \text{for all } u \in \mathbb{N},
\]

where c_1 is a constant that does not depend on u. Then for the b-adic diaphony of the first $N \geq 2$ elements of ω we have

\[
(NF_{b,N}(\omega))^2 = \mathcal{O} \left(\sum_{u=1}^{[\log_b N]} u^{s-1} b^{2T(u)} \right) \quad (\text{as } N \to \infty).
\]

Remark 2. (1) For $u \in \mathbb{N}, s \in \mathbb{N}_0$ we have

\[
\sum_{v=u-1}^{\infty} \frac{v^s}{b^v} \leq \left(2b \sum_{v=0}^{\infty} \frac{v^s}{b^v} \right) \frac{u^s}{b^u} \leq c_1 \frac{u^s}{b^u}.
\]
For $T(v) = t$ the above condition is satisfied and we get immediately the asymptotic order of the b-adic diaphony of digital (t, s)-sequences over \mathbb{Z}_b

$$F_{b,N}(\omega) = O\left(\frac{(\log N)^{s/2}}{N}\right) \quad (\text{as } N \to \infty),$$

(see also [4, Corollary 10]).

(3) For $T(m) \leq \max(C, \log_b \log m)$, $C \geq 0$, the above condition is satisfied and we get

$$F_{b,N}(\omega) = O\left(\frac{(\log \log N)(\log N)^{s/2}}{N}\right) \quad (\text{as } N \to \infty).$$

In the last example we already came close to the desired asymptotic order $O((\log N)^{s/2}N^{-1})$. In the next corollary we give an additional condition on T, which guarantees such an asymptotic behaviour.

Corollary 2. Let ω be a digital (T, s)-sequence over \mathbb{Z}_b satisfying

1. $\sum_{v=u-1}^{\infty} \frac{u_{b^s-1}}{b^s} b^{2T(v)} \leq c_1 \frac{u_{b^s-1}}{b^s} b^{2T(u)}$ for all $u \in \mathbb{N}$,
2. $\frac{1}{m} \sum_{u=1}^{m} b^{2T(u)} \leq c_2$ for all $m \in \mathbb{N}$,

where the constants c_1, c_2 do not depend on u and m, respectively. Then we have

$$F_{b,N}(\omega) = O\left(\frac{(\log N)^{s/2}}{N}\right) \quad (\text{as } N \to \infty).$$

Now we are interested in the order of the b-adic diaphony of digital (T, s)-sequences, when the quality function T does not necessarily fulfill the conditions from Corollary 2 or Corollary 1, i.e. what order we can get for almost all digital (T, s)-sequences. In the following we explain what we mean by “almost all”.

Let \mathcal{M}_s denote the set of all s-tuples of $\mathbb{N} \times \mathbb{N}$ matrices over \mathbb{Z}_b. We define the probability measure μ_s on \mathcal{M}_s as the product measure induced by a certain probability measure μ on the set \mathcal{M} of all infinite matrices over \mathbb{Z}_b. We can view \mathcal{M} as the product of denumerable many copies of the sequence space $\mathbb{Z}_b^\mathbb{N}$ over \mathbb{Z}_b, and so we define μ as the product measure induced by a certain probability measure $\tilde{\mu}$ on $\mathbb{Z}_b^\mathbb{N}$. For $\tilde{\mu}$ we just take the measure on $\mathbb{Z}_b^\mathbb{N}$ induced by the equiprobability measure on \mathbb{Z}_b.

We use now the result from [3, Example 5.50.], that μ_s-almost all s-tuples $(C_1, \ldots, C_s) \in \mathcal{M}_s$ generate a digital (T, s)-sequence over \mathbb{Z}_b such that for some constant L we have

$$T(m) \leq s \log_b m + 2 \log_b \log m + L$$

(2)
for all integers \(m \geq 2 \), to obtain the following metrical result as a consequence of Corollary 1.

Corollary 3. \(\mu_s \)-almost all \(s \)-tuples \((C_1, \ldots, C_s) \in \mathcal{M}_s \) generate a digital \((T, s)\)-sequence over \(\mathbb{Z}_b \) such that

\[
F_{b,N}(\omega) = \mathcal{O}\left(\frac{(\log \log N)^2(\log N)^{3s/2}}{N}\right) \quad \text{(as } N \to \infty)\text{.}
\]

3. Proofs

In this section we provide now the proofs of the previous results from Section 2.

Proof of Theorem 1 It is enough to show Theorem 1 for strict digital \((T, s)\)-sequences over \(\mathbb{Z}_b \). If \(\omega \) is not uniformly distributed modulo one the upper bound in Theorem 1 is infinite and therefore trivially fulfilled. So let in the following \(\omega \) be a uniformly distributed, strict digital \((T, s)\)-sequence over \(\mathbb{Z}_b \), i.e. the function \(\eta \) is always well defined. The first steps of this proof are the same as in [4, Proof of Theorem 6]. So we just recall these steps without a detailed elaboration. For a point \(x_n \) of \(\omega \) and for \(\emptyset \neq u \subset \{1, \ldots, s\} \), we define \(x_n^{(u)} \) as the projection of \(x_n \) onto the coordinates in \(u \). We have

\[
(NF_{b,N}(\omega))^2 = \frac{1}{(b+1)^s - 1} \sum_{\emptyset \neq u \subset \{1, \ldots, s\}} \Sigma(u),
\]

where

\[
\Sigma(u) := \sum_{k_{w_1}=1}^{\infty} \cdots \sum_{k_{w_{|u|}}=1}^{\infty} \left(\prod_{j \in u} \frac{1}{b^{2a(k_j)}} \right) \left| \sum_{n=0}^{N-1} b \text{wal}_{(k_{w_1}, \ldots, k_{w_{|u|}})}(x_n^{(u)}) \right|^2.
\]

For the sake of simplicity we assume in the following \(u = \{1, \ldots, \sigma\} \), \(1 \leq \sigma \leq s \), and set \(k_\sigma := (k_1, \ldots, k_\sigma) \), where \(k_j, 1 \leq j \leq \sigma \), has \(b \)-adic expansion \(k_j = \kappa_0^{(j)} + \kappa_1^{(j)} b + \cdots + \kappa_\sigma^{(j)} b^\sigma, \kappa_\sigma^{(j)} \neq 0 \). The other cases are dealt with a similar fashion. Let \(C_j = (c_v^{(j)})_{v, w \geq 1} \) and let \(c_i^{(j)} \) be the \(i \)-th row vector of the generator matrix \(C_j \). Define

\[
u(k_\sigma) := \min \left\{ l \geq 1 : \sum_{j=1}^{\sigma} (\kappa_0^{(j)} c_{1,j}^{(j)} + \cdots + \kappa_\sigma^{(j)} c_{l+1,j}^{(j)}) \neq 0 \right\}
\]
and

$$\beta_{k_\sigma} = (\beta_{k_\sigma,0}, \beta_{k_\sigma,1}, \ldots)^\top := \sum_{j=1}^{\sigma} (\kappa_0^{(j)} c_1^{(j)} + \cdots + \kappa_{a_j}^{(j)} c_{a_j+1}^{(j)}).$$

Since C_1, \ldots, C_σ generate a digital (T, s)-sequence over \mathbb{Z}_b one can verify with the same arguments as in [4, Proof of Theorem 6] that $u(k_\sigma) \leq \eta \left(\sum_{j=1}^{\sigma} a_j + \sigma \right) =: \eta(R_\sigma + \sigma)$, since the $\eta(R_\sigma + \sigma) \times (R_\sigma + \sigma)$ matrix

$$C(a_1, \ldots, a_\sigma)$$

has rank $R_\sigma + \sigma$. We have

$$\Sigma(\{1, \ldots, \sigma\})$$

$$= \frac{12}{b^2 (b^2 - 1)} \sum_{a_1=0}^{\infty} \ldots \sum_{a_\sigma=0}^{\infty} \frac{1}{b^{2R_\sigma}} \sum_{u=1}^{\eta(R_\sigma + \sigma) - b-1} b^{2u} \psi_b \left(\frac{N}{b^u} \right) \sum_{k_1=b^{a_1}}^{b^{a_1+1}-1} \cdots \sum_{k_\sigma=b^{a_\sigma}}^{b^{a_\sigma+1}-1} 1.$$

We need to evaluate the sum

$$\sum_{\substack{k_1=b^{a_1} \\ldots \kappa_\sigma=b^{a_\sigma} \\beta_{k_\sigma} = u \\beta_{k_\sigma} \neq u \\beta_{k_\sigma} = \beta}}^{b^{a_1+1}-1} \sum_{\substack{k_1=b^{a_1} \\ldots \kappa_\sigma=b^{a_\sigma} \\beta_{k_\sigma} = u \\beta_{k_\sigma} \neq u \\beta_{k_\sigma} = \beta}}^{b^{a_\sigma+1}-1} 1$$

for $1 \leq u \leq \eta(R_\sigma + \sigma)$ and $\beta \in \{1, \ldots, b - 1\}$. This is the number of digits $\kappa_0^{(1)}, \ldots, \kappa_{a_1-1}^{(1)}, \theta_1, \ldots, \kappa_0^{(\sigma)}, \ldots, \kappa_{a_\sigma-1}^{(\sigma)}, \theta_\sigma \in \{0, \ldots, b - 1\}$, $\theta_1 \neq 0, \ldots, \theta_\sigma \neq 0,$
such that

\[
C(a_1, \ldots, a_\sigma) = \left(\begin{array}{c}
\kappa_0^{(1)} \\
\vdots \\
\kappa_{a_1-1}^{(1)} \\
\theta_1 \\
\vdots \\
\kappa_{\sigma}^{(\sigma)} \\
\vdots \\
\kappa_{a_\sigma-1}^{(\sigma)} \\
\theta_{\sigma} \\
\end{array} \right) = \left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\beta \\
\vdots \\
\beta \\
\end{array} \right)
\]

for arbitrary \(x_{u+1}, \ldots, x_{\eta(R_\sigma + \sigma)} \in \mathbb{Z}_b\). Let now \(1 \leq u \leq \eta(R_\sigma + \sigma)\) and \(\beta \in \{1, \ldots, b-1\}\) be fixed. For a fixed choice of \(x_{u+1}, \ldots, x_{\eta(R_\sigma + \sigma)}\) the system has at most one solution. There are \(b^u \beta^{u(R_\sigma + \sigma) - u}\) possible choices for the \(x_{u+1}, \ldots, x_{\eta(R_\sigma + \sigma)}\). So we have

\[
\sum_{k_1=b^u+1} b^{u+1} \cdots \sum_{k_\sigma=b^{u_\sigma}-1} b^{u_\sigma+1} 1 \leq b^{\eta(R_\sigma + \sigma) - u}.
\]

Now we have

\[
\Sigma(\{1, \ldots, \sigma\})
\]

\[
\leq \frac{12}{b^2(b^2-1)} \sum_{a_1, \ldots, a_{\sigma}=0}^\infty \frac{1}{b^{2R_\sigma}} \sum_{u=1}^{\eta(R_\sigma + \sigma)} b^{u} \psi_b \left(\frac{N}{b^u} \right) b^{\eta(R_\sigma + \sigma) - u}
\]

\[
= \frac{12}{b^2(b+1)} \sum_{a_1, \ldots, a_{\sigma}=0}^\infty \frac{1}{b^{2R_\sigma}} \sum_{u=1}^{\eta(R_\sigma + \sigma)} \psi_b \left(\frac{N}{b^u} \right) b^{u} b^{\eta(R_\sigma + \sigma)}
\]

\[
= \frac{12}{b^2(b+1)} \sum_{a_1, \ldots, a_{\sigma}=0}^\infty \psi_b \left(\frac{N}{b^u} \right) \sum_{u=1}^{\eta(R_\sigma + \sigma)} b^{u} b^{\eta(R_\sigma + \sigma)}
\]

\[
= \frac{12}{b^2(b+1)} \sum_{a_1, \ldots, a_{\sigma}=0}^\infty \psi_b \left(\frac{N}{b^u} \right) \sum_{(u-1)-T(u-1)<R_\sigma + \sigma} b^{u} b^{\eta(R_\sigma + \sigma)}
\]
Proof of Corollary 1. For any $b^{m} < N \leq b^{m+1}$ we obtain out of Theorem 1 and the special form of ψ_b on $[0, \frac{1}{b}]$ that

$$(NF_{b,N}(\omega))^2 \leq c \sum_{u=1}^{\infty} \psi_b \left(\frac{N}{b^u} \right) b^u \sum_{v=u-1}^{\infty} \frac{v^{s-1}}{b^v} b^2 T(v)$$

$$(NF_{b,N}(\omega))^2 \leq cc_1 \sum_{u=1}^{m} \psi_b \left(\frac{N}{b^u} \right) u^{s-1} b^2 T(u) + cc_1 \sum_{u=m+1}^{\infty} \frac{b^2(b^2 - 1)}{b^{2u}} N^2 u^{s-1} b^2 T(u)$$

$$(NF_{b,N}(\omega))^2 \leq cc_1 \sum_{u=1}^{m} \psi_b \left(\frac{N}{b^u} \right) u^{s-1} b^2 T(u) + cc_1 \frac{b^2(b^2 - 1)}{12} N^{m+1} b^m \sum_{u=m+1}^{\infty} \frac{u^{s-1}}{b^u} b^2 T(u)$$

$$(NF_{b,N}(\omega))^2 \leq c_1 \sum_{u=1}^{m} u^{s-1} b^2 T(u) + c_2 m^{s-1} b^2 T(m)$$
THE \(b \)-ADIC DIAPHONY OF DIGITAL \((T, s)\)-SEQUENCES

\[
\mathcal{O} \left(\sum_{u=1}^{m} u^{s-1} b^{2T(u)} \right),
\]

where all appearing constants may depend only on \(b \) and \(s \). \(\square \)

Proof of Corollary 2. From Corollary 1 and the additional condition that
\[
\frac{1}{m} \sum_{u=1}^{m} b^{2T(u)} \leq c_2 \text{ for all } m \in \mathbb{N},
\]
we get for any \(b^{m-1} < N \leq b^m \)

\[
(N F_{b,N}(\omega))^2 \leq \tilde{c} \sum_{u=1}^{m} u^{s-1} b^{2T(u)}
\]

\[
\leq \tilde{c} m^s \frac{1}{m} \sum_{u=1}^{m} b^{2T(u)}
\]

\[
\leq \tilde{c} c_2 m^s,
\]

where all appearing constants may depend only on \(b \) and \(s \). From this it follows immediately that

\[
F_{b,N}(\omega) = \mathcal{O} \left(\left(\frac{\log N}{N} \right)^{s/2} \right) \quad (\text{as } N \to \infty).
\]

\(\square \)

Acknowledgements. The author would like to thank Friedrich Pillichshammer for his valuable comments and suggestions.

References

Received January 21, 2011
Accepted May 10, 2011

Julia Greslehner
Institut für Finanzmathematik
Universität Linz
Altenbergerstraße 69
A-4040 Linz
AUSTRIA
E-mail: julia.greslehner@gmx.at