ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \(\{n_k \alpha\} \)

ISTVÁN BERKES\(^1\) AND MARKO RASETA\(^2\)

Dedicated to Professor Harald Niederreiter on the occasion of his 70th birthday

ABSTRACT. By a classical result of Philipp (1975), for any sequence \((n_k)_{k \geq 1}\) of positive integers satisfying the Hadamard gap condition, the discrepancy of \((n_k x)_{1 \leq k \leq N} \mod 1\) satisfies the law of the iterated logarithm. For sequences \((n_k)_{k \geq 1}\) growing subexponentially this result becomes generally false and the asymptotic behavior of the discrepancy remains unknown. In this paper we show that for randomly sampled subsequences \((n_k)_{k \geq 1}\) the discrepancy \(D_N\) of \((n_k x)_{1 \leq k \leq N} \mod 1\) and its \(L^p\) version \(D_N^{(p)}\) not only satisfy a sharp form of the law of the iterated logarithm, but we also describe the precise asymptotic behavior of the empirical process of the sequence \((n_k x)_{1 \leq k \leq N}\), leading to substantially stronger consequences.

Communicated by W.G. Nowak

1. Introduction

An infinite sequence \((x_k)_{k \geq 1}\) of real numbers is said to be uniformly distributed mod 1 if for every pair \(a, b\) of real numbers with \(0 \leq a < b \leq 1\) we have

\[
\lim_{N \to \infty} \frac{\sum_{k=1}^{N} I_{[a,b)}(x_k)}{N} = b - a.
\]

Here \(I_{[a,b)}\) denotes the indicator function of the interval \([a, b)\), extended with period 1. It is easily seen that \((x_k)_{k \geq 1}\) is uniformly distributed mod 1 iff \(D_N(x_k) \to 0\) (or equivalently \(D_N^{(p)}(x_k) \to 0\)) where \(D_N(x_k)\) and \(D_N^{(p)}(x_k)\) are the discrepancy, resp. star discrepancy of the finite sequence \((x_k)_{1 \leq k \leq N}\) defined by.

2010 Mathematics Subject Classification: 11K38, 42A61, 46E22, 60F15, 62G30.
Keywords: Discrepancy, empirical distribution, random subsequences, reproducing kernel Hilbert space, law of the iterated logarithm.

\(^1\)Research supported by FWF Grant P24302-N18 and OTKA Grant K 108615.

\(^2\)Research supported by FWF Projekt W1230.
I. BERKES AND M. RASETA

\[D_N(x_k) := \sup_{0 \leq a < b \leq 1} \left| \frac{\sum_{k=1}^{N} I_{[a,b)}(x_k)}{N} - (b - a) \right|, \]

\[D^*_N(x_k) := \sup_{0 < a \leq 1} \left| \frac{\sum_{k=1}^{N} I_{[0,a)}(x_k)}{N} - a \right|, \]

respectively. Clearly, \(D^*_N \leq D_N \leq 2D^*_N \). By a classical result of Weyl [23], for any increasing sequence \((n_k)_{k \geq 1}\) of positive integers, \((n_k x)_{k \geq 1}\) is uniformly distributed mod 1 for almost all \(x \) and consequently, \(D_N(n_k x) \to 0 \) a.e. Computing the precise order of magnitude of \(D_N(n_k x) \) is a difficult problem and has been solved only in a few special cases. In the case \(n_k = k \), Kesten [12] proved that

\[ND_N(kx) \sim \frac{2}{\pi^2} \log N \log \log N \quad \text{in measure.} \quad (1.1) \]

For further related results, see Drmota and Tichy [6] and Kuipers and Niederreiter [13]. Philipp [15], [16] proved that if \((n_k)_{k \geq 1}\) satisfies the Hadamard gap condition

\[n_{k+1}/n_k \geq q > 1 \quad k = 1, 2, \ldots, \quad (1.2) \]

then

\[\frac{1}{4\sqrt{2}} \leq \limsup_{N \to \infty} \frac{ND_N(n_k x)}{\sqrt{2N \log \log N}} \leq C_q \quad \text{a.e.}, \quad (1.3) \]

where \(C_q \) is a constant depending only on \(q \). Note that by the Chung–Smirnov law of the iterated logarithm (see e.g. [20], p. 504) we have

\[\limsup_{N \to \infty} \frac{ND_N(\xi_k)}{\sqrt{2N \log \log N}} = 1/2 \quad \text{a.s.} \quad (1.4) \]

if \((\xi_k)_{k \geq 1}\) is a sequence of independent random variables, uniformly distributed over \((0, 1)\). A comparison of (1.3) and (1.4) shows that under (1.2) the sequence \((n_k x)_{k \geq 1}\) behaves like an i.i.d. sequence of random variables; here, and in the sequel, \(\{t\} \) denotes the fractional part of \(t \). However, the analogy is not complete: the value of the limsup in (1.3) can be different from 1/2 and can also be a nonconstant function of \(x \). Fukuyama [8] showed that in the case \(n_k = \theta^k \), \(\theta > 1 \) the limsup actually equals a constant \(\Sigma_\theta \) for almost all \(x \), where

\[\Sigma_\theta = \begin{cases} 1/2 & \text{if } \theta^r \text{ is irrational for all } r \in \mathbb{N}, \\ \sqrt{42}/9, & \text{if } \theta = 2, \\ \frac{\sqrt{(\theta + 1)\theta(\theta - 2)}}{2\sqrt{(\theta - 1)^3}} & \text{if } \theta \geq 4 \text{ is an even integer}, \end{cases} \]

(1.5)
Aistleitner [1] showed that the limsup equals 1/2 for a large class of integer sequences \((n_k)_{k \geq 1}\) satisfying certain Diophantine conditions. For examples for a nonconstant limsup function in (1.3) and its version for the star discrepancy \(D_N^*\), see Aistleitner [2] and Fukuyama and Miyamoto [11].

Given an increasing sequence \((n_k)_{k \geq 1}\) of real numbers, let

\[
F_N(t) = F_N(t, x) = \frac{1}{N} \sum_{k=1}^{N} I_{(-\infty, t]}(\{n_k x\})
\]

denote the empirical distribution function of the sample \(\{n_1 x\}, \ldots, \{n_N x\}\). Philipp [16] proved that under (1.2) the sequence

\[
\alpha_N(t, x) = \sqrt{\frac{N}{2 \log \log N}} (F_N(t, x) - t), \quad 0 \leq t \leq 1, \ N = 1, 2, \ldots \ (1.6)
\]

is relatively compact in the Skorohod space \(D[0,1]\) for almost all \(x\) and under additional number theoretic assumptions on \(n_k\) he determined the class of its limit functions in the \(D[0,1]\) metric. Since

\[
D_N^*(n_k x) = \sup_t |F_N(t, x) - t|,
\]

this leads immediately to a precise LIL for \(D_N(n_k x)\), but a functional LIL yields far deeper information on the behavior of the sequence \((\{n_k x\})_{k \geq 1}\) than (1.3); it yields the precise asymptotics of various other functionals of the curve in (1.6) with constants obtained as extreme values of functionals on Hilbert space. Unlike the constants in (1.5) above, they can only be evaluated approximately.

For sequences \((n_k)_{k \geq 1}\) growing slower than exponentially, the LIL (1.3) becomes generally false (see Berkes and Philipp [3]), and the asymptotic behavior of \(D_N(n_k x)\) remains open. It is then natural to ask about ‘typical’ behavior of the discrepancy, which requires to study \(D_N(n_k x)\) for random sequences \((n_k)_{k \geq 1}\). A simple and natural model is when \((n_k)_{k \geq 1}\) is an increasing random walk, i.e. when \(n_{k+1} - n_k\) are i.i.d. positive random variables. This model was investigated by Schatte [17], [19], Weber [22], Berkes and Weber [4]. For other randomization methods in the context of the LIL for the discrepancy of \((n_k x) \mod 1\) we refer to Fukuyama [9], [10]. The purpose of the present paper is to investigate the random walk model in more detail and to prove a functional LIL for the empirical process of \((\{n_k x\})_{1 \leq k \leq N}\) in this model.

Let \(X_1, X_2, \ldots\) be i.i.d. positive random variables defined on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\). We assume that \(X_1\) is supported on a finite interval...
[a, b] ⊂ (0, ∞) and has a bounded density. Let U be a random variable uniformly distributed on $(0, 1)$, independent of the sequence $(X_k)_{k \geq 1}$. Clearly, the existence of such a U can be guaranteed by a suitable enlargement of the probability space. Put $S_n = \sum_{k=1}^{n} X_k$ and let

$$F_N^*(t, x) = \frac{1}{N} \sum_{k=1}^{N} I_{(-\infty, t]}(\{S_k x\})$$

denote the empirical distribution function of the sample $\{S_1 x\}, \ldots, \{S_N x\}$. We will prove the following result.

Theorem. With \mathbb{P}-probability one the sequence of functions

$$\alpha_N(t, x) = \sqrt{\frac{N}{2 \log \log N}} (F_N^*(t, x) - t), \quad 0 \leq t \leq 1, \quad N = 1, 2, \ldots \quad (1.7)$$

is relatively compact in the Skorohod space $D[0, 1]$ for almost all $x > 0$ in the sense of Lebesgue measure and its class of limit functions is identical with the unit ball B_{Γ} of the reproducing kernel Hilbert space determined by the covariance function

$$\Gamma(s, s') = \mathbb{E} g_s(U) g_{s'}(U) + \sum_{k=1}^{\infty} \mathbb{E} g_s(U) g_{s'}(U + S_k x)$$

$$+ \sum_{k=1}^{\infty} \mathbb{E} g_{s'}(U) g_s(U + S_k x). \quad (1.8)$$

Here $g_s = I_{(0, s)} - s$ is the centered indicator function of the interval $(0, s)$, extended with period 1.

The absolute convergence of the series [1,8] will follow from the proof of the theorem. For background on reproducing kernel Hilbert spaces see e.g. Oodaira [14].

In the case when X_1 is uniformly distributed on $(0, 1)$, the $\{S_k x\}$ are easily seen to be independent, uniform r.v.’s and $\Gamma(s, s')$ reduces to the covariance function $s(1 - s')$ ($s < s'$) of the Brownian bridge. In this case the limit set in the theorem reduces to the set

$$K = \left\{ y(t) : y \text{ is absolutely continuous in } [0, 1], \right. \left. y(0) = y(1) = 0 \text{ and } \int_0^1 y'(t)^2 dt \leq 1 \right\}$$

obtained in the i.i.d. case by Finkelstein [7].
ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \(\{n_k \alpha\} \)

As noted above, \(\sup_{0 \leq t \leq 1} |F_N^*(t, x) - t| \) equals the star discrepancy of the sequence \(\{S_k x\}_{1 \leq k \leq N} \), while \((\int_0^1 |F_N^*(t, x) - t|^p \, dt)^{1/p} \) is the \(L_p \) discrepancy \(D_N^{(p)}(S_k x) \) of the same sequence. Thus immediate consequences of our theorem are

\[
\limsup_{N \to \infty} \sqrt{\frac{N}{2 \log \log N}} D_N^*(S_k x) = \sup_{y \in B_\Gamma} \|y\|_\infty \tag{1.9}
\]

and

\[
\limsup_{N \to \infty} \sqrt{\frac{N}{2 \log \log N}} D_N^{(p)}(S_k x) = \sup_{y \in B_\Gamma} \|y\|_p \quad (p \geq 1) \tag{1.10}
\]

\(\mathbb{P} \)-a.s. for almost all \(x \). With a different representation of the limit, relation \(\text{(1.9)} \) was obtained earlier in Schatte [19]. However, the Theorem above provides much more precise information than \(\text{(1.9)}, \text{(1.10)} \); for example, as a standard application of our theorem, one can characterize precisely how frequently \((N/(2 \log \log N))^{1/2} D_N^*(S_k x) \) can get close to its limsup or get asymptotics for weighted versions of the discrepancy. We refer to Strassen [21] for applications of functional laws of the iterated logarithm.

2. Proof of the theorem

By Fubini’s theorem, it suffices to show that for any fixed \(x > 0 \) with \(\mathbb{P} \)-probability 1 the sequence \(\text{(1.7)} \) is relatively compact in \(D[0, 1] \) and the set of its limit functions is \(B_\Gamma \). Since for any \(x > 0 \) the sequence \((X_k x)_{k \geq 1} \) also satisfies the condition of our theorem, without loss of generality we can assume \(x = 1 \).

Throughout this section, \(f : \mathbb{R} \to \mathbb{R} \) will denote bounded measurable functions satisfying

\[
f(t + 1) = f(t), \quad \int_0^1 f(t) \, dt = 0, \tag{2.1}
\]

and the \(L_2 \)-Lipschitz condition

\[
\left(\int_0^1 |f(t + h) - f(t)|^2 \, dt \right)^{1/2} \leq K h \tag{2.2}
\]

for some constant \(K > 0 \). Note that if \(f = I_{(a, b)} - (b - a) \) for some \(0 \leq a < b \leq 1 \), (extended as usual with period 1) then \(f \) satisfies \(\text{(2.1)}, \text{(2.2)} \) with \(K = 1 \). Put

\[
A^f = \|f\|^2 + 2 \sum_{k=1}^{\infty} \mathbb{E} f(U) f(U + S_k), \tag{2.3}
\]
where U is a uniform $(0, 1)$ random variable, independent of $(X_j)_{j \geq 1}$. The absolute convergence of the series (2.3) will follow from the proof of Lemma 1.

Note that our main theorem deals with the sequence $\{S_1x\}, \{S_2x\}, \ldots$, or, equivalently, with partial sums of random variables defined on the torus $T = \mathbb{R}/\mathbb{Z}$ where summation is meant mod 1. In this interpretation (which we adopt in the sequel), f is an element of $L^2(T)$ and all fractional part signs can be dropped, leading to a substantial simplification of the formulas.

In the sequel, C and λ will denote positive constants, not always the same, which depend (at most) on the function f and the distribution of the random variable X_1.

Lemma 1. Let f satisfy (2.1), (2.2), let $\ell, b, b_1, b_2, \ldots$ be positive integers and define a sequence of sets by

\[
I_1 := \{1, 2, \ldots, b\}
\]

\[
I_2 := \{p_1, p_1 + 1, \ldots, p_1 + b_1\} \text{ where } p_1 \geq b + \ell + 2
\]

\[\vdots\]

\[
I_n := \{p_{n-1}, p_{n-1} + 1, \ldots, p_{n-1} + b_{n-1}\} \text{ where } p_{n-1} \geq p_{n-2} + b_{n-2} + \ell + 2
\]

\[\vdots\]

Then there exists a sequence $\delta_1, \delta_2, \ldots$ of random variables, not depending on f, satisfying the following properties:

(i) $|\delta_n| \leq Ce^{-\lambda \ell}$ for all $n \in \mathbb{N}$,

(ii) The random variables

\[
\sum_{i \in I_1} f(S_i), \sum_{i \in I_2} f(S_i - \delta_1), \ldots, \sum_{i \in I_n} f(S_i - \delta_{n-1}), \ldots
\]

are independent.

Proof. We will construct the sequence $(\delta_n)_{n \in \mathbb{N}}$ by induction. Define

\[
\delta_1 := (S_{b+\ell} - S_b) - F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b),
\]

where, for any random variable Y, F_Y denotes the distribution function of Y. By the assumptions of our theorem and Theorem 1 of Schatte [18] we have

\[
\sup_t |F_{S_n}(t) - t| \leq Ce^{-\lambda n} \quad n \in \mathbb{N}.
\] (2.4)

Since $S_{b+\ell} - S_b \stackrel{d}{=} S_\ell$ for all b and all ℓ, it follows easily that $|\delta_1| \leq Ce^{-\lambda \ell}$.

Furthermore we have

\[
S_{p_1} - \delta_1 = S_{p_1} - (S_{b+\ell} - S_b) + F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b)
\]

6
ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \(\{n_k \alpha \} \)

\[
= (X_1 + \cdots + X_b) + (X_{b+\ell} + \cdots + X_{p_1}) + F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b).
\]

Similarly,

\[
S_{p_1+1} - \delta_1 = (X_1 + \cdots + X_b) + (X_{b+\ell+1} + \cdots + X_{p_1+1}) + F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b).
\]

\[
\vdots
\]

\[
S_{p_1+b_1} - \delta_1 = (X_1 + \cdots + X_b) + (X_{b+\ell+1} + \cdots + X_{p_1+1}) + F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b).
\]

Thus applying Lemma 1 of [17] with

\[
X = (X_1, X_2, \ldots, X_b)
\]

\[
U = F_{S_{b+\ell} - S_b} (S_{b+\ell} - S_b)
\]

\[
(W_1, \ldots, W_{p_1+b_1}) = ((X_{b+\ell+1} + \cdots X_{p_1}), \ldots, (X_{b+\ell+1} + \cdots X_{p_1+b_1}))
\]

\[
W = X_1 + \cdots + X_b,
\]

it follows that

\[
\sum_{j \in I_1} f(S_j) \text{ is independent of } \sum_{j \in I_2} f(S_j - \delta_1).
\]

Now suppose \(\delta_1, \ldots, \delta_{n-1} \) have been constructed and define

\[
Y_n = S_{p_{n-1}+b_{n-1}+\ell} - S_{p_{n-1}+b_{n-1}}, \quad \delta_n = Y_n - F_{Y_n} (Y_n).
\]

As before, it follows easily that \(|\delta_n| \leq Ce^{-\lambda\ell} \). We let

\[
X = (X_1, \ldots, X_{p_{n-1}+b_{n-1}+\ell}, \delta_1, \ldots, \delta_{n-1})
\]

\[
U = F_{Y_n} (Y_n)
\]

\[
W = X_1 + \cdots + X_{p_{n-1}+b_{n-1}}
\]

\[
(W_1, \ldots, W_{p_n}) = (X_{p_{n-1}+b_{n-1}+\ell+1} + \cdots + X_{p_n}, \ldots, X_{p_{n-1}+b_{n-1}+\ell+1} + \cdots + X_{p_n+b_n}).
\]

Then, again by Lemma 1 of [17] it follows that

\[
\sum_{i \in I_{n+1}} f(S_i - \delta_n) \text{ is independent of } \left(\sum_{i \in I_1} f(S_i), \ldots, \sum_{i \in I_n} f(S_i - \delta_{n-1}) \right),
\]

which completes the induction step and the proof of the lemma. \(\square \)
Put \(\tilde{m}_k = \sum_{j=1}^k \lfloor j^{1/2} \rfloor \), \(\hat{m}_k = \sum_{j=1}^k \lfloor j^{1/4} \rfloor \) and let \(m_k = \tilde{m}_k + \hat{m}_k \). Using Lemma 1 we can construct sequences \((\Delta_k)_{k \in \mathbb{N}}, (\Pi_k)_{k \in \mathbb{N}} \) of random variables such that
\[|\Delta_k| \leq Ce^{-\lambda \sqrt{k}}, \quad |\Pi_k| \leq Ce^{-\lambda \sqrt{k}} \tag{2.5} \]
and
\[
\begin{align*}
T_k^{(f)} &:= \sum_{j=m_k-1+1}^{m_k-1+\lfloor \sqrt{k} \rfloor} (f(S_j - \Delta_{k-1}) - \mathbb{E}f(S_j - \Delta_{k-1})) \\
T_k^{*(f)} &:= \sum_{j=m_k-1+\lfloor \sqrt{k} \rfloor + 1}^{m_k} (f(S_j - \Pi_{k-1}) - \mathbb{E}f(S_j - \Pi_{k-1})
\end{align*}
\]
are sequences of independent random variables.

Lemma 2. Under the conditions of Lemma 1 we have
\[\sum_{k=1}^n \text{Var}(T_k^{(f)}) \sim A^{(f)} \tilde{m}_n, \quad \sum_{k=1}^n \text{Var}(T_k^{*(f)}) \sim A^{(f)} \hat{m}_n, \]
where \(A^{(f)} \) is defined by (2.3).

Proof. Since \(f \) does not change in the proof, we will drop the upper index \(f \) from \(T_k^{(f)}, T_k^{*(f)} \) and \(A^{(f)} \). Clearly
\[
\text{Var}(T_k) = \sum_{j=m_k-1+1}^{m_k-1+\lfloor \sqrt{k} \rfloor} \mathbb{E}f^2(S_j - \Delta_{k-1}) + 2 \sum_{\ell=1}^{\lfloor \sqrt{k} \rfloor - 1} \sum_{\ell=m_k-1+1}^{m_k-1+\lfloor \sqrt{k} \rfloor - \ell} \mathbb{E}f(S_\ell - \Delta_{k-1})f(S_\ell + \ell - \Delta_{k-1}) - L^{(k)}
\]
where
\[
L^{(k)} := \left(\sum_{j=m_k-1+1}^{m_k-1+\lfloor \sqrt{k} \rfloor} \mathbb{E}f(S_j - \Delta_{k-1}) \right)^2.
\]
By (2.1), (2.2), (2.4) and (2.5) we have
\[\|f(S_j - \Delta_{k-1}) - f(S_j)\| \leq Ce^{-\lambda \sqrt{k-1}} \]
and
\[|\mathbb{E}f(S_j)| = |\mathbb{E}f(S_j) - \mathbb{E}f(F_{S_j}(S_j))| \leq Ce^{-\lambda j} \]
thus
ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \{n_k \alpha\}

since \(F_{S_j}(S_j) \) is a uniformly distributed random variable and thus the last expectation in the previous displayed formula equals 0 by \((2.1)\). Thus

\[
L^{(k)} \leq Cke^{-\lambda \sqrt{k-1}}.
\]

Let now

\[
\Lambda^{(k)} := \sum_{j=m_{k-1}+1}^{m_k-\lfloor \sqrt{k} \rfloor} \gamma_{j,k} \quad \text{and} \quad O^{(k)} := \sum_{j=m_{k-1}+1}^{m_k-\lfloor \sqrt{k} \rfloor} \varepsilon_j,
\]

where

\[
\gamma_{j,k} = \mathbb{E}f^2(S_j - \Delta_{k-1}) - \mathbb{E}f^2(S_j) \quad \text{and} \quad \varepsilon_j = \mathbb{E}f^2(S_j) - \mathbb{E}f^2(F_{S_j}(S_j)).
\]

Repeating the argument above for the function \(f^2 - \|f\|^2 \), we get

\[
\sum_{j=m_{k-1}+1}^{m_k-\lfloor \sqrt{k} \rfloor} \mathbb{E}f^2(S_j - \Delta_{k-1}) = \|f\|^2 \lfloor \sqrt{k} \rfloor + \Lambda^{(k)} + O^{(k)}
\]

and

\[
|\Lambda^{(k)}| \leq C\sqrt{ke^{-\lambda(k-1)^{1/4}}} \quad \text{and} \quad |O^{(k)}| \leq Ce^{-\lambda(m_{k-1}+1)}.
\]

We now turn to the cross terms. Define \(T_{\ell,q} = X_{\ell+1} + \cdots + X_{\ell+q} \) and split the product expectation \(\mathbb{E}f(S_{\ell} - \Delta_{k-1})f(S_{\ell+q} - \Delta_{k-1}) \) into the sum of terms

\[
e_{\ell,q,k} := \mathbb{E}f(S_{\ell} - \Delta_{k-1})f(S_{\ell+q} - \Delta_{k-1}) - \mathbb{E}f(S_{\ell})f(S_{\ell+q} - \Delta_{k-1})
\]

\[
g_{\ell,q,k} := \mathbb{E}f(S_{\ell})f(S_{\ell+q} - \Delta_{k-1}) - \mathbb{E}f(S_{\ell})f(S_{\ell+q})
\]

\[
h_{\ell,q} := \mathbb{E}f(S_{\ell})f(S_{\ell+q}) - \mathbb{E}f(F_{S_{\ell}}(S_{\ell}))f(S_{\ell+q})
\]

\[
i_{\ell,q} := \mathbb{E}f(F_{S_{\ell}}(S_{\ell}))f(S_{\ell} + T_{\ell,q}) - \mathbb{E}f(F_{S_{\ell}}(S_{\ell}))f(F_{S_{\ell}}(S_{\ell}) + T_{\ell,q})
\]

\[
C_{\ell,q} := \mathbb{E}f(F_{S_{\ell}}(S_{\ell}))f(F_{S_{\ell}}(S_{\ell}) + T_{\ell,q}).
\]

Here \(F_{S_{\ell}}(S_{\ell}) \) is a uniformly distributed variable independent of \(T_{\ell,q} \) and thus letting \(U \) denote a uniform random variable independent of \((X_j)_{j \geq 1} \),

\[
C_{\ell,q} = C_{\ell,q} = \mathbb{E}f(U)f(U + S_{\ell,q})
\]

does not depend on \(\ell \). Exactly as before,

\[
|e_{\ell,q,k}| \leq Ce^{-\lambda(k-1)^{1/4}} \quad |g_{\ell,q,k}| \leq Ce^{-\lambda(k-1)^{1/4}} \quad |h_{\ell,q}| \leq Ce^{-\lambda \ell} \quad |i_{\ell,q}| \leq Ce^{-\lambda \ell}.
\]

Thus letting

\[
E^{(k)} = 2 \sum_{q=1}^{\lfloor \sqrt{k} \rfloor - 1} \sum_{\ell=m_{k-1}+1}^{m_{k-1}+\lfloor \sqrt{k} \rfloor} e_{\ell,q,k} \quad \text{and} \quad G^{(k)} = 2 \sum_{q=1}^{\lfloor \sqrt{k} \rfloor - 1} \sum_{\ell=m_{k-1}+1}^{m_{k-1}+\lfloor \sqrt{k} \rfloor} g_{\ell,q,k}
\]

9
we have

\[|E^{(k)}| \leq C k e^{-\lambda(k-1)/4}, \quad |G^{(k)}| \leq C k e^{-\lambda(k-1)/4} \]

\[|H^{(k)}| \leq C \sqrt{k} e^{-\lambda(m_{k-1}+1)}, \quad |I^{(k)}| \leq C \sqrt{k} e^{-\lambda(m_{k-1}+1)}. \]

Furthermore,

\[\sum_{\ell=1}^{m_{k-1}} \sum_{\ell' = m_{k-1} + 1}^{\lfloor \sqrt{k} \rfloor} C_{\ell, \ell'} = \sum_{\ell=1}^{m_{k-1}} \sum_{\ell' = m_{k-1} + 1}^{\lfloor \sqrt{k} \rfloor} C_{\ell'} = \lfloor \sqrt{k} \rfloor \sum_{\ell=1}^{\lfloor \sqrt{k} \rfloor} C_{\ell} - \lfloor \sqrt{k} \rfloor \sum_{\ell=1}^{\lfloor \sqrt{k} \rfloor} C_{\ell} = \sum_{\ell=1}^{\lfloor \sqrt{k} \rfloor} \rho C_{\ell}. \]

Thus using the independence of the \(T_k \) we get

\[\text{Var} \left(\sum_{k=1}^{n} T_k \right) = \sum_{k=1}^{n} \text{Var}(T_k) = O(1) + \sum_{k=4}^{n} \text{Var}(T_k) \]

\[= O(1) + \sum_{k=4}^{n} \left(\lfloor \sqrt{k} \rfloor + \Lambda^{(k)} + O^{(k)} + 2E^{(k)} + 2G^{(k)} + 2H^{(k)} + 2I^{(k)} \right) \]

\[+ \lfloor \sqrt{k} \rfloor \cdot 2 \sum_{\ell=1}^{\infty} C_{\ell} - 2\lfloor \sqrt{k} \rfloor \sum_{\ell=1}^{\infty} C_{\ell} - 2 \sum_{\ell=1}^{\lfloor \sqrt{k} \rfloor-1} \rho C_{\ell} - L^{(k)} \). \]

Using the same techniques as before, we get \(|C_{\ell}| \leq C e^{-\lambda \ell}. \) Hence the previously established inequalities yield

\[\text{Var} \left(\sum_{k=1}^{n} T_k \right) \sim A \tilde{m}_n \sim A m_n. \]

Similarly,

\[\text{Var} \left(\sum_{k=1}^{n} T_k^* \right) \sim A \tilde{m}_n, \]

completing the proof of Lemma. \(\square \)
ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \{n_k \alpha\}

Since
\[\text{Cov}(T_k^{(f)}, T_k^{(g)}) = \frac{1}{4} \left(\text{Var}(T_k^{(f+g)}) - \text{Var}(T_k^{(f-g)}) \right), \]

Lemma 2 implies

Corollary. We have
\[\sum_{k=1}^{n} \text{Cov}(T_k^{(f)}, T_k^{(g)}) \sim \frac{1}{4} \left(A^{(f+g)} - A^{(f-g)} \right) \tilde{m}_n, \]

and
\[\sum_{k=1}^{n} \text{Cov}(T_k^{*(f)}, T_k^{*(g)}) \sim \frac{1}{4} \left(A^{(f+g)} - A^{(f-g)} \right) \hat{m}_n. \]

From (2.6) it follows that
\[A^{(f+g)} - A^{(f-g)} = 4 \langle f, g \rangle + 4 \sum_{k=1}^{\infty} E_f(U) g(U + S_k) + 4 \sum_{k=1}^{\infty} E_g(U) f(U + S_k). \] (2.6)

Let 0 < t_1 < \ldots < t_r \leq 1 and put
\[Y_k = (f(0, t_1)(S_k), f(0, t_2)(S_k), \ldots, f(0, t_r)(S_k)) \]
where \(f(a, b) = I_{(a, b)} - (b - a), \) with the indicator \(I_{(a, b)} \) extended with period 1, as before.

Lemma 3. With \(\mathbb{P} \)-probability 1, the class of limit points of the sequence
\[\left\{ (2N \log \log N)^{-1/2} \sum_{k=1}^{N} Y_k, \quad N = 1, 2, \ldots \right\} \] (2.7)
in \(\mathbb{R}^r \) is the ellipsoid
\[\left\{ (x_1, \ldots, x_r) : \sum_{i, j=1}^{r} \Gamma(t_i, t_j)x_ix_j \leq 1 \right\} \] (2.8)
where \(\Gamma \) is the function defined in equation (1.8).

Proof. Let
\[T_k = \left(T_k^{(f_{(0, t_1)})}, \ldots, T_k^{(f_{(0, t_r)})} \right), \quad T_k^{*} = \left(T_k^{*(f_{(0, t_1)})}, \ldots, T_k^{*(f_{(0, t_r)})} \right), \]
and let \(\Sigma_k \) denote the covariance matrix of the vector \(T_k \). From the Corollary and Lemma 3 it follows that
\[m_n^{-1} (\Sigma_1 + \ldots + \Sigma_n) \longrightarrow \Sigma \]
where
\[\Sigma = (\Gamma(t_i, t_j))_{1 \leq i, j \leq r}. \]
Clearly
\[|T_k| \leq C_r k^{1/2} = o(m_k \log \log m_k)^{1/2} \]
where \(C_r \) is a constant depending on \(r \), showing that the sequences \((T_k)_{k \geq 1}\) of independent random variables satisfies Kolmogorov’s condition of the LIL. Thus Theorem 1 in Berning [5] implies that the set of limit points of
\[\left\{ (2m_n \log \log m_n)^{-1/2} \sum_{k=1}^n T_k \right\} \tag{2.9} \]
is the ellipsoid (2.8). A similar statement holds for the sequence \((T_k^*)_{k \geq 1}\), implying that
\[\left| \sum_{k=1}^n T_k^* \right| = O(\hat{m}_n \log \log \hat{m}_n)^{1/2} = o(m_n \log \log m_n)^{1/2} \quad \text{a.s.} \]
Also, for any \(f = f_{(0,t_i)}, 1 \leq i \leq r \) we have
\[\max_{m_k+1 \leq \ell \leq m_{k+1}} \left| \sum_{j=m_k+1}^\ell (f(S_j) - E f(S_j)) \right| = O(m_{k+1} - m_k) = O(k^{1/2}) = o(m_k \log \log m_k)^{1/2}. \]

From these relations Lemma 3 follows immediately. \(\square \)

Lemma 4. Let \(f \) satisfy (2.1), (2.2). Then we have
\[E \left(\sum_{k=M+1}^{M+N} f(S_k) \right)^2 \leq C \| f \| N. \tag{2.10} \]
where \(C \) is a constant depending only on the constant \(K \) in (2.2) and the distribution of \(X_1 \).

Note that in the previous lemmas and their proofs the constants \(C \) and \(\lambda \) depend on \(f \) and the distribution of \(X_1 \). In Lemma 4 (as well as in Lemma 5 below) the dependence of the constant \(C \) on \(f \) is more specific: it is only through the constant \(K \) in (2.2). As we pointed out before, if \(f = I_{(a,b)} - (b-a) \) for some \(0 \leq a < b \leq 1 \), then \(f \) satisfies (2.2) with \(K = 1 \) and thus Lemma 4 (as well as Lemma 5 below) hold uniformly for all centered indicators \(f \).

Proof. In what follows, \(C \) and \(\lambda \) will denote positive constants, possibly different at different places, depending on the distribution of \(X_1 \) and the constant \(K \) in (2.2). We first show
\[|E f(S_k)f(S_\ell)| \leq C e^{-\lambda(\ell-k)} \| f \| \quad (k < \ell). \tag{2.11} \]
ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \(\{n_k \alpha\} \)

Indeed, by Lemma 4.3 and relation (4.8) of Berkes and Weber [4] there exists a r.v. \(\Delta \) with \(|\Delta| \leq Ce^{-\lambda(\ell-k)} \) such that \(S_\ell - \Delta \) is a uniform r.v. independent of \(S_k \). Hence

\[
\mathbb{E} f(S_\ell - \Delta) = \int_0^1 f(t) dt = 0
\]

and thus

\[
\mathbb{E} f(S_k) f(S_\ell - \Delta) = \mathbb{E} f(S_k) \mathbb{E} f(S_\ell - \Delta) = 0. \tag{2.12}
\]

On the other hand,

\[
|\mathbb{E} f(S_k) f(S_\ell) - \mathbb{E} f(S_k) f(S_\ell - \Delta)| \leq \mathbb{E} |f(S_\ell)| |f(S_\ell) - f(S_\ell - \Delta)| \leq (\mathbb{E} f^2(S_k))^{1/2} \mathbb{E} |f(S_\ell) - f(S_\ell - \Delta)|^{1/2}. \tag{2.13}
\]

Since \(X_1 \) has a bounded density, by Theorem 1 of Schatte [18] the density \(\varphi_n \) of \(S_n \) exists for all \(n \geq 1 \) and satisfies \(\varphi_n \to 1 \) uniformly on \([0, 1]\). Thus

\[
P(S_n \in I) \leq C|I| \quad (n \geq 1) \tag{2.14}
\]

whence we get

\[
\mathbb{E} f^2(S_k) \leq C \int_0^1 f^2(t) dt = C\|f\|^2. \tag{2.15}
\]

On the other hand, \(|\Delta| \leq Ce^{-\lambda(\ell-k)} \) implies

\[
\mathbb{E} |f(S_\ell) - f(S_\ell - \Delta)|^2 \leq Ce^{-\lambda(\ell-k)} \tag{2.16}
\]

which, together with (2.13–2.16), gives

\[
|\mathbb{E} f(S_k) f(S_\ell) - \mathbb{E} f(S_k) f(S_\ell - \Delta)| \leq Ce^{-\lambda(\ell-k)}. \tag{2.17}
\]

Thus using (2.12) we get (2.11). Now by (2.11)

\[
\sum_{M+1 \leq \ell \leq M+N} \mathbb{E} f(S_k) f(S_\ell) \leq CN\|f\| \sum_{\ell \geq 1} e^{-\lambda \ell} \leq CN\|f\|
\]

which, together with (2.15), completes the proof of Lemma 4. \(\square \)

Lemma 5. Let \(f \) satisfy (2.1), (2.2). Then for any \(M \geq 0, N \geq 1, \) real \(t \geq 1 \) and \(\|f\| \geq N^{-1/4} \) we have

\[
P\left\{ \left| \sum_{k=M+1}^{M+N} f(S_k) \right| \geq t\|f\|^{1/4}(N \log \log N)^{1/2} \right\} \leq \exp \left(-Ct\|f\|^{-1/2} \log \log N \right) + t^{-2}N^{-1} \tag{2.17}
\]
where C is a constant depending only on the constant K in (2.2) and the distribution of X_1.

Proof. Put

$$
\psi(n) = \sup_{0 \leq x \leq 1} |P(S_n \leq x) - x|.
$$ \hfill (2.18)

By Theorem 1 of [18] we have

$$
\psi(n) \leq Ce^{-\lambda n} \quad (n \geq 1).
$$ \hfill (2.19)

Divide the interval $[M + 1, M + N]$ into subintervals I_1, \ldots, I_L, with $L \sim N^{19/20}$, where each interval I_ν contains $\sim N^{1/20}$ terms. We set

$$
\sum_{k=M+1}^{M+N} f(S_k) = \eta_1 + \cdots + \eta_L
$$

where

$$
\eta_\nu = \sum_{k \in I_\nu} f(S_k).
$$

We deal with the sums $\sum \eta_{2j}$ and $\sum \eta_{2j+1}$ separately. Since there is a separation $\sim N^{1/20}$ between the even block sums η_{2j}, we can apply Lemma 4.3 of [4] to get

$$
\eta_{2j} = \eta^{*}_{2j} + \eta^{**}_{2j}
$$

where

$$
\eta^{*}_{2j} = \sum_{k \in I_{2j}} f(S_k - \Delta_j)
$$

and

$$
\eta^{**}_{2j} = \sum_{k \in I_{2j}} (f(S_k) - f(S_k - \Delta_j))
$$

(2.20)

where the Δ_j are r.v.’s with $|\Delta_j| \leq \psi(N^{1/20}) \leq N^{-10}$ and the r.v.’s η^{*}_{2j}, $j = 1, 2, \ldots$ are independent. Relation (2.10) in the proof of Lemma 4 shows that the L_2 norm of each summand in η^{**}_{2j} is $\leq C\psi(N^{1/20}) \leq CN^{-10}$ and thus for $\|f\| \geq N^{-1/4}$ we have

$$
\|\eta^{**}_{2j}\| \leq CN^{-9} \leq C\|f\|N^{-8}.
$$ \hfill (2.21)

Thus

$$
\left\| \sum \eta^{**}_{2j} \right\| \leq C\|f\|N^{-7}
$$

and therefore by the Markov inequality

$$
P\left(\left\| \sum \eta^{**}_{2j} \right\| \geq t\|f\|^{1/4}(N \log \log N)^{1/2} \right)
\leq Ct^{-2}\|f\|^{-1/2}(N \log \log N)^{-1}\|f\|^2N^{-14} \leq t^{-2}N^{-1}.
$$ \hfill (2.22)
Let now \(|\lambda| = O(N^{-1/16})\), then \(|\lambda \eta^*_j| \leq C|\lambda|N^{1/20} \leq 1/2\) for \(N \geq N_0\) and thus using \(e^x \leq 1 + x + x^2\) for \(|x| \leq 1/2\) we get, using \(E\eta^*_j = 0\),

\[
E\left(\exp\lambda\left(\sum_j \eta^*_j\right)\right) = \prod_j E(e^{\lambda \eta^*_j}) \leq \prod_j E(1 + \lambda \eta^*_j + \lambda^2 \eta^*_j^2) = \prod_j (1 + \lambda^2 E\eta^*_j^2) \leq \exp\left(\lambda^2 \sum_j E\eta^*_j^2\right).
\]

By Lemma 4

\[
||\eta_j|| \leq C ||f||^{1/2}N^{1/40},
\]
which, together with (2.21) and the Minkowski inequality, implies

\[
||\eta^*_j|| \leq C ||f||^{1/2}N^{1/40}.
\]

Thus the last expression in (2.23) cannot exceed

\[
\exp\left(\lambda^2 C ||f|| \sum_j N^{1/20}\right) \leq \exp(\lambda^2 C ||f|| N).
\]

Hence choosing

\[
\lambda = (\log \log N/N)^{1/2} ||f||^{-3/4}
\]
(note that by \(||f|| \geq N^{-1/4}\) we have \(|\lambda| = O(N^{-1/6})\)) and using the Markov inequality, we get

\[
P\left\{\sum_j \eta^*_j \geq t||f||^{1/4}(N \log N)^{1/2}\right\} \leq \exp\left\{- \lambda t||f||^{1/4}(N \log N)^{1/2} + \lambda^2 C ||f|| N\right\}
\]

\[
= \exp\left(-||f||^{-1/2}t \log \log N + C||f||^{-1/2} \log \log N\right)
\]

\[
\leq \exp\left(-C'||f||^{-1/2}t \log \log N\right)
\]

completing the proof of Lemma 5.

□

With Lemmas 4, 5 at hand, the proof of the Theorem can be completed easily. Given any \(0 < t_1 < \ldots < t_r = 1\), let \(B_T(t_1, \ldots, t_r)\) denote the set of points of the form \((g(t_1), \ldots, g(t_r))\), where \(g(\cdot) \in B_T\). By the standard method of proving functional laws of the iterated logarithm developed in Strassen [21], Finkelstein [7], it suffices to prove that with probability 1 the sequence \(\alpha_N(\cdot)\) is relatively compact in the \(D[0,1]\) topology and for any \(0 < t_1 < \ldots < t_r = 1\), \(r = 1, 2, \ldots\) the set of limit points of the vector \((\alpha_N(t_1), \ldots, \alpha_N(t_r))\) is identical with the set \(B_T(t_1, \ldots, t_r)\). Since \(B_T(t_1, \ldots, t_r)\) coincides with the ellipsoid (2.8), the second statement follows from Lemma 3. On the other hand, the equicontinuity
statement can be proved by a dyadic chaining argument, similar to the proof of Proposition 3.3.2 in Philipp [16]. (The uniformity of the statements of Lemmas 4 and 5 over all centered indicator functions is needed in this chaining argument.) Since the necessary modifications are routine, we omit the details.

Acknowledgement. We would like to thank the referee for his careful reading of the paper and for his remarks leading to a substantial improvement of the presentation.

REFERENCES

ON THE DISCREPANCY AND EMPIRICAL DISTRIBUTION FUNCTION OF \(\{n_k\alpha\} \)

Received January 24, 2014
Accepted May 19, 2014

I. Berkes
Institute of Statistics
Graz University of Technology
Kopernikusgasse 24
8010 Graz, Austria
E-mail: berkes@tugraz.at

M. Raseta
Department of Mathematics
University of York
York YO10 5DD
Great Britain
E-mail: marko.raseta@york.ac.uk