PALINDROMIC CLOSURES AND THUE-MORSE SUBSTITUTION FOR MARKOFF NUMBERS

CHRISTOPHE REUTENAUER — LAURENT VUILLON

ABSTRACT. We state a new formula to compute the Markoff numbers using iterated palindromic closure and the Thue-Morse substitution. The main theorem shows that for each Markoff number \(m\), there exists a word \(v \in \{a, b\}^*\) such that \(m - 2\) is equal to the length of the iterated palindromic closure of the iterated antipalindromic closure of the word \(av\). This construction gives a new recursive construction of the Markoff numbers by the lengths of the words involved in the palindromic closure. This construction interpolates between the Fibonacci numbers and the Pell numbers.

Communicated by Jean-Louis Verger-Gaugry

1. Introduction

Markoff numbers are fascinating integers; the reader may use the recent book by Martin Aigner [A] for studying them. These numbers are related to number theory, hyperbolic geometry, continued fractions and Christoffel words [A, M1, M2, F, Re1, Re2]. Many great mathematicians have worked on these numbers and the famous uniqueness conjecture by Frobenius is still unsolved [B, M1, M2, F, C1, C2]. Markoff numbers are positive integers that appear in the solution of the Diophantine equation

\[x^2 + y^2 + z^2 = 3xyz.\]

The first Markoff numbers are 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461,

2010 Mathematics Subject Classification: 68R15, 52C99.

Keywords: iterated palindromic closure, Thue-Morse Substitution, Markoff spectra.
37666, 43261, 51641; they are listed in the Sloane Encyclopedia of Integer Sequences (sequence number A002559). One shows that if a Markoff triple \((x, z, y)\), that is, a triple satisfying the previous Diophantine equation, has maximum \(z\), then the triple gives birth to two others, which are \((x, 3xy - z, z)\) and \((z, 3zy - x, y)\) (see [A] Section 3.1). One can construct a binary tree using these computations, were each node is a Markoff triple (see [A]). The Frobenius conjecture asserts that each Markoff number is the maximum of a unique Markoff triple \((A, Re2)\). In the work of Markoff [M1, M2], one find implicitly combinatorics on words and construction of balanced sequences [CF, BS, V, BdLR] on the alphabet \(\{11, 22\}\). The Markoff numbers are also linked with approximation theory and continued fractions [BRS, B].

In this article, we find a new relation between Markoff numbers and combinatorics on words. The main theorem shows that for each Markoff number \(m\) there exists a word \(v \in \{a, b\}^*\) such that \(m - 2\) is equal to the length of the iterated palindromic closure of the iterated antipalindromic closure of the word \(av\).

The *iterated palindromic closure* (due to Aldo de Luca) is used in combinatorics on words in order to generate standard Sturmian words and central words [LL, J, BS]. One defines first the *palindromic closure* \(w^+\) of a word \(w\): it is the shortest palindrome having \(w\) as prefix (it exists and is unique). The iterated palindromic closure \(\operatorname{Pal}(u)\) is then defined recursively by \(\operatorname{Pal}(1) = 1\) (the empty word), and \(\operatorname{Pal}(va) = (\operatorname{Pal}(v)a)^+\) for any word \(v\) and any letter \(a\).

The *iterated antipalindromic closure* appears in the literature in order to construct antipalindromes and to generalize the iterated palindromic closure [LLDL, BPTV]. In fact, when the alphabet is binary, the iterated antipalindromic closure of a word \(u\) is obtained by applying the Thue-Morse substitution to the iterated palindromic closure of \(u\) [LLDL].

As an application of the main theorem, we give a new computation of Markoff numbers by a recursive construction on the lengths of the words involved in the iterated palindromic closure. The lengths of these words allow us to state a recursive formula using a *directive sequence* \(d = d_1d_2 \ldots d_j\) with \(d_i\) on the alphabet \(\{a, b\}\). One interesting property is to recover the usual Fibonacci recursive construction if \(d_j \neq d_{j-1} \neq d_{j-2}\) and the usual Pell recursive construction if \(d_j \neq d_{j-1} = d_{j-2}\) [C3, BRS].

Note that in the articles [F, P] we find two other decompositions of the Markoff numbers as sums of positive integers: using properties of continued fractions in the work of Frobenius and properties of snake graphs in the work of Propp et al. (see also [A]).
2. Iterated palindromic closures

In the sequel we work with the usual notations in combinatorics on words [BS]. Let A be a finite alphabet.

The reversal of a word $x = x_1x_2\ldots x_n$ with $x_i \in A$ is the word $\bar{x} = x_nx_{n-1}\ldots x_1$.

A word p is a palindrome if it is equal to its reversal (that is $p = \bar{p}$).

The length of a word $u = u_1u_2\ldots u_m$, where $u_i \in A$, is equal to m and is denoted $|u|$.

The concatenation of two words $u = u_1u_2\ldots u_m$ and $v = v_1v_2\ldots v_n$ is the word of the length $m + n$ given by $u \cdot v = u_1u_2\ldots u_mv_1v_2\ldots v_n$.

In this article we use the palindromic closure, introduced by A l d o d e L u c a [dL] (more precisely, it is the right palindromic closure): the palindromic closure of a word x is the shortest palindrome having x as a prefix; it exists and is unique; it is denoted by $x(+)$. For example, if $x = ab$, then $x(+) = aba$.

It is known that $x(+) = x'y\bar{x}'$, where $x = x'y$ with y the longest palindrome suffix of x. We consider the iterated palindromic closure (also introduced in [dL]), denoted by Pal(d): it is a mapping from the free monoid on A into itself, defined recursively by

$$\text{Pal}(d_1d_2\ldots d_n) = \text{Pal}(d_1d_2\ldots d_{n-1})d_n(+) \quad \text{for} \quad d_i \in A,$$

with the initial condition Pal$(1) = 1$, where 1 denotes the empty word. This mapping is injective and w is called the directive word of Pal(w). For example, Pal$(aba) = abaaba$: indeed,

$$\text{Pal}(a) = a \quad \text{and} \quad \text{Pal}(ab) = \left(\text{Pal}(a)\bar{b} \right)(+) = (ab)(+) = aba$$

and then

$$\text{Pal}(aba) = \left(\text{Pal}(ab)a \right)(+) = \left(\text{aba} \right)(+) = abaaba.$$

We also use the Thue-Morse substitution, denoted by $\theta = (ab, ba)$: it is an endomorphism of the free monoid $\{a, b\}^*$ that maps the letter a to ab and the letter b to ba.

27
3. Main theorem

From now on, we work with the binary alphabet $\mathcal{A} = \{a, b\}$. We give a link between the computation of Markoff numbers and the length of words computed by iterated palindromic closure and Thue-Morse substitution:

Theorem 1. For each word $v \in \{a, b\}^*$, the number $|\text{Pal} \circ \theta \circ \text{Pal}(av)| + 2$ is a Markoff number $\neq 1, 2$. The mapping defined in this way from $\{a, b\}^*$ into the set of Markoff numbers different from $1, 2$ is surjective. Injectivity of this mapping is equivalent to the Frobenius conjecture.

Remark. If v' is obtained from v by interchanging a and b, one finds that $\text{Pal} \circ \theta \circ \text{Pal}(av)$ and $\text{Pal} \circ \theta \circ \text{Pal}(bv')$ have the same length. In other words, since the roles of a and b are symmetric, starting the word with b would give exactly symmetric words of the same length, so that we can consider the word av without loss of generality.

Examples. The first Markoff numbers (not equal to 1 or 2) are 5, 13 and 29. The Markoff number $m = 5$ is given by $v = 1$: indeed, $\text{Pal}(a) = a$, thus $\theta \circ \text{Pal}(a) = ab$ and then $\text{Pal} \circ \theta \circ \text{Pal}(a) = aba$, which is of length 3.

The Markoff number $m = 13$ is given by $v = a$: indeed, $\text{Pal}(aa) = aa$, thus $\theta \circ \text{Pal}(aa) = abab$ and then $\text{Pal} \circ \theta \circ \text{Pal}(aa) = abaaababaaba$, which is of length 11.

The Markoff number $m = 29$ is given by $v = b$ indeed, $\text{Pal}(ab) = aba$, thus $\theta \circ \text{Pal}(aba) = ababaababa$, and then $\text{Pal} \circ \theta \circ \text{Pal}(ab) = ababaababaababaababaababa$, which is of length 27.

Proof. Define the monoid homomorphism μ from the free monoid $\{a, b\}^*$ into $\text{SL}_2(\mathbb{Z})$ by

$$
\mu(a) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \mu(b) = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}.
$$

It is known that $\mu(u)_{12}$ is a Markoff number for each word lower Christoffel word u, and that each Markoff number m is equal to $\mu(u)_{12}$ for some lower Christoffel word u, see [BLRS, Th. 8.10]. Moreover, the uniqueness of u is equivalent to the Frobenius conjecture.

If $m \neq 1, 2$, then $u \neq a, b$; in this case $u = apb$, and it is known that $p = \text{Pal}(v)$ for some word v in $\{a, b\}^*$; moreover, the mapping $v \mapsto a\text{Pal}(v)b$ is a bijection from $\{a, b\}^*$ onto the set of proper lower Christoffel words (this well-known result follows for example from [BLRS, Corollary 3.1]).

Consider the monoid homomorphism α from the free monoid $\{a, b\}^*$ into $\text{SL}_2(\mathbb{Z})$ defined by

$$
\alpha(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \alpha(b) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
$$
PALINDROMIC CLOSURES AND THUE-MORSE FOR MARKOFF NUMBERS

We have
\[\alpha(ab) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \mu(a), \quad \alpha(aabb) = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = \mu(b). \]

Consider \(\phi = (ab, aabb) \). Then \(\mu = \alpha \phi \).

Note that for each word \(m, b \phi(m) = \psi(m)b \), where \(\psi = (ba, baab) = (ba, ab)G \) with \(G = (a, ab) \). Using [BdLR Corollary 3.2], we see that the length of the Christoffel word \(a \text{Pal}(w)b \) is equal to \(h + i + j + k \), where \(\alpha(w) = \begin{pmatrix} h & i \\ j & k \end{pmatrix} \).

The word \(w \) is defined as follows: we have \(\phi(u) = \phi(apb) = ab \phi(p) aabb \) and we define \(w = b \phi(p)a \). Thus \(\phi(u) = awabb \). Then we have
\[
\mu(u) = \alpha \phi(u) = \alpha(awabb) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h & i \\ j & k \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}
= \begin{pmatrix} * & h + i + j + k \\ * & * \end{pmatrix}
\]
and therefore \(m = \mu(u)_{12} = h + i + j + k = |a \text{Pal}(w)b| \).

Furthermore,
\[
w = b \phi(p)a = \psi(p)ba = ((ba, ab)G(p))((ba, ab)G(a)) = (ba, ab)G(pa).
\]

Since \(p = \text{Pal}(v) \), we obtain
\[
G(pa) = G(\text{Pal}(v)a) = \text{Pal}(av),
\]
by Justin’s formula [Be J]. Thus \(w = (ba, ab) \circ \text{Pal}(av) \). The computation of \(m \) gives
\[
m = 2 + |\text{Pal}(w)|
= 2 + |\text{Pal} \circ (ba, ab) \circ \text{Pal}(av)|
= 2 + |E \circ \text{Pal} \circ (ba, ab) \circ \text{Pal}(av)|
= 2 + |\text{Pal} \circ E \circ (ba, ab) \circ \text{Pal}(av)|
= 2 + |\text{Pal} \circ (ab, ba) \circ \text{Pal}(av)|
= 2 + |\text{Pal} \circ \theta \circ \text{Pal}(av)|.
\]

\[\Box \]

A word \(z \) is an antipalindrome if it is equal to the exchange of its reversal (that is \(z = E(\tilde{z}) \)). For example, \(z = aababb \) is an antipalindrome because its reversal is \(\tilde{z} = bbabaa \) and the exchange gives \(E(\tilde{z}) = aababb \).

As for the palindromic case, we use the antipalindromic closure and the iterated antipalindromic closure which are defined in the work of de Luca and De Luca [dLDL]. The antipalindromic closure of a word \(x \) is the shortest antipalindrome having \(x \) as a prefix; it is denoted by \(x^\oplus \). For example, if \(x = ab \), then \(x^\oplus = ab \) because \(ab \) is already an antipalindrome and if \(x = aa \),
then \(x^\oplus = aabb \). The iterated antipalindromic closure noted \(\text{AntiPal}(d) \) is defined by the recursive formula
\[
\text{AntiPal}(d_1 d_2 \cdots d_n) = (\text{AntiPal}(d_1 d_2 \cdots d_{n-1}) d_n)^\oplus
\]
and the initial condition \(\text{AntiPal}(1) = 1 \). For example, \(\text{AntiPal}(aba) = abbaababbaab \); indeed, \(\text{AntiPal}(a) = ab \), thus \(\text{AntiPal}(ab) = (\text{AntiPal}(a)b)^\oplus = abbaab \) and then \(\text{AntiPal}(aba) = (\text{AntiPal}(ab)a)^\oplus = (ababab)^\oplus = abbaababbaab \).

We see that \(\text{AntiPal}(aba) = ab \cdot ba \cdot ab \cdot ab \cdot ba \cdot ab = (ab, ba) \circ \text{Pal}(aba) \).

This is a general fact, as shown in [dLDL] Theorem 7.6.

Theorem 2 (De Luca, De Luca). Let \(v \) be a word on the alphabet \(A = \{a, b\} \) and \(\theta = (ab, ba) \) be the Thue-Morse substitution. Then
\[
\text{AntiPal}(v) = \theta \circ \text{Pal}(v).
\]

Corollary 3. For each word \(v \in \{a, b\}^* \), the number \(|\text{Pal} \circ \text{AntiPal}(av)| + 2 \) is a Markoff number \(\neq 1, 2 \). The mapping defined in this way from \(\{a, b\}^* \) into the set of Markoff numbers different from 1,2 is surjective. Injectivity of this mapping is equivalent to the Frobenius conjecture.

4. Computation of Markoff numbers

The previous corollary gives a new way to compute the Markoff numbers by using iterated antipalindromic closures and iterated palindromic closures. We now give a recursive formula for computing the Markoff numbers.

Theorem 4. Consider \(d = \text{AntiPal}(av) \) with \(v \in \{a, b\}^* \). We write \(d = d_1 d_2 \cdots d_{|d|} \) with \(d_i \in \{a, b\} \). We let \(L_0 = L_1 = 1 \) and \(L_2 = L_1 + L_0 = 2 \). For \(j \geq 3 \) we define recursively the \(L_j \):
\[
L_j = \begin{cases}
L_{j-1} & \text{if } d_j = d_{j-1}, \\
L_{j-1} + L_{j-2} & \text{if } d_j \neq d_{j-1} \neq d_{j-2}, \\
L_{j-1} + L_{j-2} + L_{j-3} & \text{if } d_j \neq d_{j-1} = d_{j-2}.
\end{cases}
\]

Then the Markoff number \(m_v \) is given by
\[
m_v = 1 + \sum_{j=0}^{|d|} L_j.
\]

Consider the example \(v = ab \).

We have \(d = \text{AntiPal}(aab) = \theta(\text{Pal}(aab)) = \theta(aabaa) = abbaababab \) and then
\[
L_0 = 1; L_1 = 1; L_2 = L_1 + L_0 = 1 + 1 = 2; L_3 = L_2 + L_1 = 2 + 1 = 3
\]
(because \(d_3 = a \neq d_2 = b \neq d_1 = a \)); \(L_4 = L_3 + L_2 = 3 + 2 = 5 \)
For the prefix of length one of d are the length of each W_j and thus L_j.

Thus we have

We define

A more compact way of writing the L_i’s is to write d and above each letter the L_i:

$$d_v = a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ 1 \ 1 \ 2 \ 3 \ 5 \ 5 \ 13 \ 13 \ 31 \ 44 \ 75$$

Proof. To prove the theorem, we use Justin’s Formula \cite{J,Be} \begin{equation}
\text{Pal}(d' d'') = \psi_{d'}(d'') \cdot \text{Pal}(d')
\end{equation}

with d' a word on $\{a,b\}^*$ and d'' a letter.

We recall that

$$\psi_{d'}(a) = \psi_{d'_1} \left(\psi_{d'_2} \left(\cdots \psi_{d'_{|d'|}}(a) \right) \right) \quad \text{with} \quad \psi_{a}(a) = a, \ \psi_{a}(b) = ab$$

(ψ_a was previously denoted G) and $\psi_b(a) = ba, \psi_b(b) = b$.

In our construction, we use $d = \text{AntiPal}(av)$ with $v \in \{a,b\}^*$ and we have to study $\text{Pal}(d) = \text{Pal}(d_1 d_2 \ldots d_{|d|-1} d_{|d|})$. By successive applications of Justin’s Formula we find

$$\text{Pal}(d_1 d_2 \ldots d_{|d|}) = \psi_{d_1 d_2 \ldots d_{|d|-1}}(d_{|d|}) \cdot \text{Pal}(d_1 d_2 \ldots d_{|d|-1})$$

$$\text{Pal}(d) = \text{Pal}(d_1 d_2 \ldots d_{|d|}) = \psi_{d_1 d_2 \ldots d_{|d|-1}}(d_{|d|}) \cdot \psi_{d_1 d_2}(d_3) \cdot \psi_{d_1}(d_2) \cdot d_1.$$

We define

$$W_j = \psi_{d_1 d_2 \ldots d_{j-1}}(d_j)$$

and

$$L'_j = |W_j| \quad \text{for} \quad j = 1, \ldots, |d|.$$
Now we compute the recursive formula for prefixes of length at least three of d. We have six cases to consider, indeed, we use the directive word $d = (ab, ba) \circ \text{Pal}(av)$ and thus aaa and bbb are forbidden words in the directive word d. It is sufficient to use Justin’s formula for the following prefixes of d:

$$d'aba, \ d'bba, \ d'bba, \ d'aab, \ d'baa \ \text{and} \ d'abb \ \text{with} \ d' \in \{a, b\}^*.$$

The first case of the recursive formula is given by the prefixes of d' of the form $d'baa$. We write $d = d_1d_2 \ldots d_{j-1}d_j = d'baa$ for a given j and we are in the case $d_j = d_{j-1} = a$. Thus we have by the definition

$$W_j = \psi_{d'ba}(a) \ \text{and} \ W_{j-1} = \psi_{d'b}(a).$$

We have

$$W_j = \psi_{d'ba}(a) = \psi_{d'b}(\psi_a(a)) = \psi_{d'b}(a) = W_{j-1}, \ \text{thus} \ W_j = W_{j-1}.$$

We find $L_j' = L_{j-1}'$ for $d_j = d_{j-1} = a$. Similarly, by exchanging the roles of a and b that is by considering the prefixes of the form $d'abb$ we find $W_j = W_{j-1}$; thus $L_j' = L_{j-1}'$ for $d_j = d_{j-1} = b$.

The second case of the recursive formula is given by the prefixes of d of the form $d'aba$. We write $d_1d_2 \ldots d_{j-1}d_j = d'aba$ for a some j and we are in the case $d_j = a \neq d_{j-1} = b \neq d_{j-2} = a$. By the definition

$$W_j = \psi_{d'ab}(a) \ \text{and} \ W_{j-1} = \psi_{d'a}(b) \ \text{and} \ W_{j-2} = \psi_{d'}(a),$$

we have

$$W_j = \psi_{d'ab}(a) = \psi_{d'a}(\psi_b(a)) = \psi_{d'a}(ba) = \psi_{d'a}(b) \cdot \psi_{d'a}(a) = \psi_{d'a}(b) \cdot \psi_{d'}(\psi_a(a)) = \psi_{d'a}(b) \cdot \psi_{d'}(a) = W_{j-1} \cdot W_{j-2}.$$

Thus we have

$$W_j = W_{j-1} \cdot W_{j-2} \ \text{and} \ L_j' = L_{j-1}' + L_{j-2}'$$

for $d_j = a \neq d_{j-1} = b \neq d_{j-2} = a$. Similarly, for the prefixes of the form $d'bab$ by exchanging the roles of a and b we have

$$W_j = \psi_{d'ba}(b) = W_{j-1}W_{j-2} \ \text{and} \ L_j' = L_{j-1}' + L_{j-2}'$$

for $d_j = b \neq d_{j-1} = a \neq d_{j-2} = b$.

The third case is given by the prefixes of d of the form $d''bba$. As bbb is forbidden in d, thus we write

$$d_1d_2 \ldots d_{j-1}d_j = d'abba \ \text{and we have} \ d_j = a \neq d_{j-1} = d_{j-2} = b.$$

32
PALINDROMIC CLOSURES AND THUE-MORSE FOR MARKOFF NUMBERS

By the definition

\[W_j = \psi_{d'}abb(a), \quad W_{j-1} = \psi_{d'}ab(b), \quad W_{j-2} = \psi_{d'}a(b) \quad \text{and} \quad W_{j-3} = \psi_{d'}(a) \]

for a given \(j \) we have

\[W_j = \psi_{d'}abb(a) = \psi_{d'}a \left(\psi_b(\psi_b(a)) \right) = \psi_{d'}a(ba) = \psi_{d'}a \left(\psi_{d'}a(ba) \right) \]

\[= \psi_{d'}a(b) \cdot \psi_{d'}a(b) \cdot \psi_{d'}a(a) = \psi_{d'}ab(b) \cdot \psi_{d'}a(b) \cdot \psi_{d'}a(a) \]

\[= \psi_{d'}ab(b) \cdot \psi_{d'}a(b) \cdot \psi_{d'}a(a) \]

\[= W_{j-1} \cdot W_{j-2} \cdot W_{j-3} \]

Thus we have

\[W_j = \psi_{d'}abb(a) = W_{j-1} \cdot W_{j-2} \cdot W_{j-3} \]

and thus

\[L'_j = L'_{j-1} + L'_{j-2} + L'_{j-3} \quad \text{for} \quad d_j = a \neq d_{j-1} = d_{j-2} = b, \]

And similarly, for the prefixes of the form \(d'baab \) we find

\[W_j = \psi_{d'baa}(b) = W_{j-1} \cdot W_{j-2} \cdot W_{j-3} \]

and

\[L'_j = L'_{j-1} + L'_{j-2} + L'_{j-3} \quad \text{for} \quad d_j = b \neq d_{j-1} = d_{j-2} = a. \]

Finally, we have to compute the Markoff numbers by using Corollary 3:

\[m = |\text{Pal}(d)| + 2 \quad \text{with} \quad d = \text{AntiPal}(av). \]

Thus by Justin’s Formula

\[m = \left| \psi_{d_1d_2\ldots d_{|d|-1}}(d_{|d|}) \psi_{d_1d_2}(d_3) \psi_{d_1}(d_2) \right| + 2 \]

\[= |W_{|d|}| + |W_{|d|-1}| + \cdots + |W_2| + |W_1| + 2 \]

\[= 2 + \sum_{j=1}^{|d|} L_j = 1 + \sum_{j=0}^{|d|} L_j. \]

Note that in the second case of the recursive formula, we have a Fibonacci recurrence

\[L_j = L_{j-1} + L_{j-2}. \]

In the third case of the recursive formula we have

\[L_j = L_{j-1} + L_{j-2} + L_{j-3} \quad \text{and} \quad d_{j-1} = d_{j-2}. \]

By application of the first case of the recursive formula we find

\[L_{j-1} = L_{j-2} \]

and then a Pell recurrence

\[L_j = 2L_{j-2} + L_{j-3}. \]
REFERENCES

PALINDROMIC CLOSURES AND THUE-MORSE FOR MARKOFF NUMBERS

[Re2] ——— *From Christoffel words to Markoff numbers*, (in preparation)

Received August 7, 2016
Accepted January 20, 2017

Christophe Reutenauer
Université du Québec à Montréal
Département de Mathématiques
Montréal
CANADA
E-mail: christo@math.uqam.ca

Laurent Vuillon
Université de Savoie Mont Blanc
LAMA—UMR CNRS 5127
Chambéry
FRANCE
E-mail: Laurent.Vuillon@univ-smb.fr